Skip to main content

Molecular basis for branched steviol glucoside biosynthesis in Stevia rebaudiana

New research reveals the molecular machinery behind the high-intensity sweetness of Stevia rebaudiana. The results could be used to engineer new non-caloric products without the aftertaste that many associate with sweetener marketed as Stevia.

Although the genes and proteins in the biochemical pathway responsible for stevia synthesis are almost completely known, this is the first time that the three-dimensional structure of the proteins that make rebaudioside A or 'RebA,' the major ingredient in the product Stevia, has been published, according to the researchers of a new paper in the Proceedings of the National Academy of Sciences.

Dlium Molecular basis for branched steviol glucoside biosynthesis in Stevia rebaudiana

"If someone is diabetic or obese and needs to remove sugar from their diet, they can turn to artificial sweeteners made from chemical synthesis (aspartame, saccharin, etc), but all of these have 'off-tastes' not associated with sugar, and some have their own health issues," said Joseph Jez of the Washington University in St. Louis.

"Stevias and their related molecules occur naturally in plants and are more than 200 times sweeter than sugar. They've been consumed for centuries in Central and South America, and are safe for consumers," Jez said.

"Many major food and beverage companies are looking ahead and aiming to reduce sugar/calories in various projects over the next few years in response to consumer demands worldwide," he said.

Researchers determined the structure of the RebA protein by X-ray crystallography. Their analysis shows how RebA is synthesized by a key plant enzyme and how the chemical structure needed for that high-intensity sweetness is built biochemically.

To make something 200 times sweeter than a single glucose molecule, the plant enzyme decorates a core terpene scaffold with three special sugars. That extra-sweet taste from the stevia plant comes with an unwanted flavor downside, however.

"For me, the sweetness of Stevia comes with an aftertaste of licked aluminum foil. The taste is particular to the predominant molecules in the plant leaf: the stevioside and RebA. It is their chemical structure that hits the taste receptors on the tongue that trigger 'sweet,' but they also hit other taste receptors that trigger the other tastes," Jez said.

"RebA is abundant in the stevia plant and was the first product made from the plant because it was easy to purify in bulk. Call this 'Stevia 1.0'. But in the leaf are other related compounds with different structures that hit the 'sweet' without the aftertaste. Those are 'Stevia 2.0,' and they will be big," said Jez.

Many consumers experience this slightly metallic aftertaste. There are many ways that the newly published protein structure information could be used to help improve sweeteners.

"One could use the snapshot of the protein that makes RebA to guide protein engineering efforts to tailor the types and/or pattern of sugars in the stevias. This could be used to explore the chemical space between 'sweet' and 'yuck'," Jez said.

"There are also molecules in other plants that are not 'stevias' but can deliver intense sweetness. We could use the information of how the stevia plant does it as a way of finding those details," he said.

Journal : Soon Goo Lee et al. Molecular basis for branched steviol glucoside biosynthesis, PNAS, June 10, 2019, DOI:10.1073/pnas.1902104116

Popular Posts

Ralph Holzenthal caddisfly (Rhyacophila lignumvallis) from Corsica in Rhyacophila tristis (Schmid 1970) group

NEWS - Ralph Holzenthal caddisfly ( Rhyacophila lignumvallis Graf & Rázuri-Gonzales, sp. nov.) from the island of Corsica (France) was established as a new species in the Rhyacophila tristis (Schmid 1970) group based on morphological analysis and the mitochondrial cytochrome c oxidase subunit I (mtCOI), including sequences from 16 of the 28 species in the group. Rhyacophila Pictet 1834 with 814 living and 30 fossil species is the largest genus of caddisflies in the world, distributed mainly in the northern hemisphere, but also in temperate and tropical India and Southeast Asia. One of the groups is the R. tristis group in the branch Rhyacophila invaria . R. lignumvallis is most similar to Rhyacophila pubescens Pictet 1834, Rhyacophila tsurakiana Malicky 1984, Rhyacophila ligurica Oláh & Vinçon 2021, Rhyacophila harmasa Oláh & Vinçon 2021 and Rhyacophila abruzzica Oláh & Vinçon 2021. However, R. lignumvallis differs in the shape of the X tergum, the dorsal arm ...

Golden trumpet (Allamanda cathartica)

Allamanda or golden trumpet ( Allamanda cathartica ) is a species of plant in Apocynaceae, evergreen, woody shrub, upright, up to 2 meters high, old stems are brown due to wood formation and young shoots are green. The leaves have pointed tips, rough surfaces, 6-23 cm long and gathered in 3-4 strands. The flowers are yellow and shaped like trumpets, 9 cm long and 5-7.5 cm in diameter. This species grows around rivers or open areas that are exposed to lots of sunlight with sufficient rain and high humidity throughout the year. This plant is unable to grow in saline or too alkaline soil and cannot withstand low temperatures. A. cathartica grows well and produces flowers in full sun intensity without obstruction. This species grows well in sandy soil, rich in organic matter and well aerated. The right climate for growth is a tropical climate. The native habitat is at an elevation of 0-700 meters, rainfall 1000-2800 mm/year. Flowers grow year-round in many habitats, propagating by seed an...

Bush sorrel (Hibiscus surattensis)

Bush sorrel ( Hibiscus surattensis ) is a plant species in Malvaceae, annual shrub, crawling on the surface or climbing, up to 3 meters long, thorny stems, green leaves, yellow trumpet flowers, grows wild in forests and canal edges, widely used for vegetables and treatment. H. surattensis has stems with spines and hairs, branching and reddish green. Petiole emerges from the stem with a straight edge to the side, up to 11 cm long, sturdy, thorny, hairy and reddish green. The leaves have a length of 10 cm, width of 10 cm, 3-5 lobed, each has a bone in the middle with several pinnate veins, sharp tip, sharp and jagged edges, wavy, stiff, green surface. Flowers up to 10 cm long, trumpet-shaped, yellow with a purple or brown or red center, solitary, axillary. Epicalyx has forked bracts, linear inner branches, spathulate outer branches. Stalks up to 6-7 cm. The seeds have a length of 3-3.5 mm and a width of 2.5 mm. Bush sorrels grow in pastures, marshes, abandoned fields and plantations, ...