Skip to main content

88.3 million metric tons irrecoverable carbon found around surf hotspots

NEWS - Surfers have a significant role to play in conservation while protecting climate-critical carbon stocks. Researchers have identified 88.3 million metric tons (Mt) of unrecoverable carbon stored in surf ecosystems, equivalent to about 1% of the world’s annual global energy-related CO2 emissions.

88.3 million metric tons irrecoverable carbon found around surf hotspots

Surf spots like Morotai Island are global allies in the fight against climate change. Planet-warming carbon is found around surf spots across the US, Australia, Indonesia and Brazil that have been identified as conservation priorities.

Researchers from Oregon State University in Oregon, the Surf Conservation Program in Honolulu, the Save The Waves Coalition in Santa Cruz, The Betty and Gordon Moore Center for Science in Arlington, and Arizona State University in Tempe report on the opportunity for social movements to cool the planet.

The forests, mangroves and wetlands around surf spots store nearly 90 Mt of “irrecoverable carbon” that stabilizes the climate and makes coastal locations valuable. Five countries account for nearly half of the stored carbon: surf spots in the US, Australia, Indonesia, Brazil and Panama.

Jacob Bukoski of Oregon State University and his team analyzed more than 4,800 popular surf spots in 113 countries and found that the surrounding area within 1 kilometer of a wave stores more than 88 Mt of irrecoverable carbon. When the surrounding area was expanded to 3 kilometers, the amount of carbon stored in the ecosystem more than doubled to 191.7 Mt.

Irreversible carbon refers to carbon-rich land that must be protected to prevent the worst impacts of climate change. Areas of irrecoverable carbon overlap with places that contain high concentrations of biodiversity.

This overlap is true for surf breaks, with nearly 17.2 Mt of the total 88.3 Mt of irrecoverable carbon found within key biodiversity areas. However, only 3% of this 17.2 Mt represents areas of high carbon and biodiversity that are officially protected.

Protecting surf ecosystems can help prevent the carbon that causes global warming and play a role in halting biodiversity loss. For example, enforcing laws in surf spots and surrounding areas from threats from tourism, irresponsible development, deforestation, mining, fishing and plastic pollution.

“Our research shows where, exactly, we need to focus our attention now on legal protection of these areas. Surfers around the world are fantastic allies for this kind of effort, they love the ocean. They’ve helped lead the way in creating all of the surf protected areas we’ve built together,” said Scott Atkinson, a surfer and senior director of surf conservation at Conservation International.

To date, Conservation International has worked with partners to establish 30 Surf Protected Areas in Indonesia, Costa Rica and Peru. Surf Protected Areas act as anchors and powerful levers to legally protect the wider surrounding ecosystem, including coastal forests, mangroves, beaches, seagrasses, coral reefs and the waves themselves.

More than half of these, 23 Surf Protected Areas, have been established in Indonesia, creating an effective community-based protection network. Collectively, the 23 sites form Indonesia’s first Surf Protected Area Network, covering more than 60,000 hectares and potentially expanding to hundreds of world-class surf spots across the country.

“The Morotai Island area in Indonesia protects valuable marine and coastal ecosystems and strengthens community ties and cultural heritage. The local community has been surfing on handmade wooden boards since at least World War II and has a strong surfing culture,” Atkinson said.

“In addition, local livelihoods related to surfing and conservation are starting to thrive with eco-tourism and sustainable fishing practices becoming the norm. Community involvement in conservation efforts has fostered a sense of pride and ownership that demonstrates the power of grassroots initiatives in achieving sustainable environmental and social benefits,” Atkinson said.

Original research

Bukoski, J. J., Atkinson, S. R., Miller, M. A. S., Sancho-Gallegos, D. A., Arroyo, M., Koenig, K., Reineman, D. R., & Kittinger, J. N. (2024). Co-occurrence of surf breaks and carbon-dense ecosystems suggests opportunities for coastal conservation. Conservation Science and Practice, e13193. DOI:10.1111/csp2.13193

Popular Posts

Humpback whales (Megaptera novaeangliae) manufacture bubble-nets as tools to increase prey intake

NEWS - Humpback whales ( Megaptera novaeangliae ) create bubble net tools while foraging, consisting of internal tangential rings, and actively control the number of rings, their size, depth and horizontal spacing between the surrounding bubbles. These structural elements of the net increase prey intake sevenfold. Researchers have known that humpback whales create “bubble nets” for hunting, but the new report shows that the animals also manipulate them in a variety of ways to maximize catches. The behavior places humpbacks among the rare animals that make and use their own tools. “Many animals use tools to help them find food, but very few actually make or modify these tools themselves,” said Lars Bejder, director of the Marine Mammal Research Program (MMRP), University of Hawaii at Manoa. “Humpback whales in southeast Alaska create elaborate bubble nets to catch krill. They skillfully blow bubbles in patterns that form a web with internal rings. They actively control details such ...

Javan mocca or Javan slender caesar (Amanita javanica)

OPINION - Javan mocca or Javan slender caesar ( Amanita javanica ) is a mysterious fungus species and has been enigmatic since it was first reported by Boedijn in 1951 and after that no explanation or reporting of specimens is believed to be the same as expected. Boedijn (1951) described A. javanica which grew on Java island as having the characteristics covered in the Amanita genus. Corner and Bas in 1962 tried to describe Javan mocca and all species in Amanita based on specimens in Singapore. Over time some reports say that they have found A. javanica specimens in other Southeast Asia including also China, Japan, India and Nepal. But there is no definitive knowledge and many doubt whether the specimen is the same as described by Boedijn (1951). I was fortunate to have seen this species one afternoon and soon I took out a camera for some shots. In fact, I've only met this mushroom species once. Javan mocca is an endangered species and I have never seen in my experience in...

Javanese grasshopper (Valanga nigricornis)

Wooden grasshopper or Javanese grasshopper ( Valanga nigricornis ) is an animal species of Acrididae, grasshoppers that have at least 18 subspecies, insects with very wide diversity in color and size, sexual dimorphism in which females are larger in size and paler in color. V. nigricornis in males has a length of 45-55 millimeters and females 15-75 mm. The head is square and green or yellow or brown or black in color. A pair of antennas has a black color. The eyes are large and gray or white or brownish. The hind legs are very large and have a green or yellow or brown or black color, plain or brindle. The limbs have two rows of large and long spines with black tips facing backward. The wings have a length exceeding the belly, a rough surface and are brown or green or yellow or black in color with pulse lines forming spaces filled with black color. The hind wings are rose red which will be visible when flying. Nymphs are pale green or yellow or brown or blackish in color. Javanese gr...