Skip to main content

Coevolution predator and prey, a siliceous arms race in pelagic plankton

NEWS - Aquatic life is very metropolitan with a variety of small plankton and plays an important role as a starting point in the food cycle to support the survival of larger species above it up to the very large fin whale (Balaenoptera physalus).

Coevolution predators and prey, a siliceous arms race in pelagic plankton

Recently Bejder el al (2024) placed humpback whales (Megaptera novaeangliae) as one of the sophisticated animals that created and modified tools for hunting prey in the form of bubble nets, meanwhile Shoham et al (2024) reported Theonella conica and Entotheonella symbiosis produces high levels of poison to repel predators.

The coevolution of predators and prey plays a major role in shaping the pelagic region and may have significant implications for marine ecosystems and nutrient cycling dynamics. Siliceous diatom frustules are often assumed to have co-evolved with silica-coated copepod teeth, but empirical evidence on how this relationship drives natural selection and evolution is lacking.

Is the predator-prey arms race a driving force in planktonic evolution and diversity? Fredrik Ryderheim from the Technical University of Denmark and the University of Copenhagen and his team show that feeding on diatoms causes significant wear on copepod teeth and that this causes copepods to become selective feeders.

The teeth of copepods that feed on thick-shelled diatoms are more likely to break or crack than those that feed on dinoflagellates. When feeding on large diatoms, all teeth analyzed had visible wear. The findings underline the importance of predator-prey relationships in planktonic evolution and diversity.

The mandibles of copepods that feed on Coscinodiscus radiatus or Thalassiosira weissflogii are five times more likely to break or crack than those that feed on dinoflagellates. The structure of the mandibles is closely related to the diet. The researchers have videotaped how copepods eat or reject individual cells that they have captured.

The thicker shells provide better protection against copepod predation. However, most importantly, copepods become more selective in their choice of prey and increased food selectivity is an adaptive force for diatoms. A selective advantage for diatoms to grow thicker shells.

In effect, the copepod-diatom arms race resembles the insect-grass arms race also by leaf silification and the consequent wear and tear on insect jaws. Their arms race and any associated trade-offs are one of the driving mechanisms for the enormous diversity among these organisms.

Original research

Fredrik Ryderheim, Jørgen Olesen, and Thomas Kiørboe (2024). A siliceous arms race in pelagic plankton. Proceedings of the National Academy of Sciences 121 (35) e2407876121 DOI:10.1073/pnas.2407876121

Popular Posts

Humpback whales (Megaptera novaeangliae) manufacture bubble-nets as tools to increase prey intake

NEWS - Humpback whales ( Megaptera novaeangliae ) create bubble net tools while foraging, consisting of internal tangential rings, and actively control the number of rings, their size, depth and horizontal spacing between the surrounding bubbles. These structural elements of the net increase prey intake sevenfold. Researchers have known that humpback whales create “bubble nets” for hunting, but the new report shows that the animals also manipulate them in a variety of ways to maximize catches. The behavior places humpbacks among the rare animals that make and use their own tools. “Many animals use tools to help them find food, but very few actually make or modify these tools themselves,” said Lars Bejder, director of the Marine Mammal Research Program (MMRP), University of Hawaii at Manoa. “Humpback whales in southeast Alaska create elaborate bubble nets to catch krill. They skillfully blow bubbles in patterns that form a web with internal rings. They actively control details such ...

Sweetpotato bug (Physomerus grossipes)

Kutu ketela or sweetpotato bug ( Physomerus grossipes ) is an insect species in Coreidae, brown with black legs, adults growing about 2 cm long, oval shaped, segmented antennas, heavily veined membranes, metathoracic odor glands and enlarged rear tibia. P. grossipes generally live in Leguminosae and Convolvulaceae especially sweet potato ( Physomerus grossipes ), pink morning glory ( Ipomoea carnea ), purple beans ( Vigna unguiculata ), Asian pigeonwings ( Clitoria ternatea ) and common bean ( Phaseolus vulgaris ). Sweetpotato bugs suck liquid from the stem which causes plants to wither and disrupt fruit production. P. grossipes places eggs at the bottom of the leaves or stems or grass around them. Females are very protective of their children, keeping eggs and nymphs from predators as the most famous example of maternal care in Coreidae. Even so, about 20% of eggs are eaten by predators such as ants and 13% are lost by parasitoid predation by chalcid wasps which lay eggs in egg...

Javan broadhead planarian (Bipalium javanum)

Cacing palu or Javan broadhead planarian ( Bipalium javanum ) is a species of animal in Geoplanidae, hermaphrodite, living on the ground, predators, often called only hammerhead or broadhead or shovel worms because of wide heads and simple copulatory organs. B. javanum has a slim stature, up to 20 cm long, up to 0.5 cm wide, head wide up to 1 cm or less, small neck, widening in the middle and the back end is rounded, all black and shiny. Javan broadhead planarians walk above ground level by raising their heads and actively looking left, right and looking up using strong neck muscles. Move swiftly, track meander, climb to get through all obstacles or make a new path if the obstacle is too high. Cacing palu track and prey on earthworms and mollusks. They use muscles and sticky secretions to attach themselves to prey to lock in. The head and ends of the body are wrapped around and continue to close the body to stop prey reactions. They produce tetrodotoxins which are very strong...