Skip to main content

Escherichia coli based antibiotic candidates from actinobacteria metabolites in deep Arctic Sea

NEWS - Anyone with an open wound is constantly exposed to dangerous infections, so antibiotics have become a keystone of modern medicine. However, the world continues to face a global antibiotic crisis, as more and more bacterial strains become resistant, while the discovery of new antibiotics is much slower.

Escherichia coli based antibiotic candidates from actinobacterial metabolites in deep Arctic Sea

A large number of antibacterial agents are derived from bacterial metabolites. Enteropathogenic Escherichia coli (EPEC) is a pathogen that causes intestinal infections characterized by thinning of the microvilli and lesions of the intestinal epithelium associated with abnormal actin polymerization.

Almost 70% of all antibiotics currently come from actinobacteria in the soil and most of the unexplored environments on Earth. Recently, the search for actinobacteria in other habitats, especially in the ocean, such as compounds isolated from marine species, is a promising strategy.

"Here we show how advanced screening assays can identify antivirulence and antibacterial metabolites from actinobacterial extracts. Compounds that inhibit the virulence of EPEC without affecting its growth and compounds that inhibit the growth of actinobacteria," says Päivi Tammela from the University of Helsinki.

Tammela and team developed a series of novel methods to simultaneously test the antivirulence and antibacterial effects of hundreds of unknown compounds. EPEC attaches to cells in the intestine, then injects virulence factors into the host cell to hijack the molecular machinery, causing severe diarrhea, especially in children, and often fatal.

The researchers identified potential antivirulence compounds for EPEC infection among bacterial metabolites harvested from actinobacteria from the Arctic Ocean by applying a virulence-based screening assay. They demonstrated the suitability of this antivirulence assay to screen fractions of actinobacterial extracts for bioassay-guided metabolite identification.

The tested compounds came from four actinobacterial species isolated from invertebrates collected off the coast of Svalbard during an expedition on the Norwegian research vessel "Kronprins Haakon" in August 2020. These bacteria were then cultured, cells were extracted, and their contents were separated into fractions. Each fraction was tested in vitro against EPEC attached to colorectal cancer cells.

The researchers found two unknown compounds with strong antivirulence or antibacterial activity. One from an unknown strain (T091-5) in Rhodococcus and the other from an unknown strain (T160-2) from Kocuria.

The compounds showed two complementary types of activity. First, they inhibited the formation of the “actin pedestal” by EPEC bacteria, a key step by which the pathogen attaches to the intestinal lining. Second, they inhibited the binding of EPEC to the Tir receptor on the surface of host cells, a step required to rewire intracellular processes and cause disease.

The researchers used sophisticated analytical techniques to determine the most promising active compound from T091-5, which is likely to be a phospholipid, a class of fatty phosphorus-containing molecules that play a key role in cellular metabolism.

“The next step is to optimize the culture for compound production and isolate sufficient quantities of the compounds to elucidate their individual structures and further investigate their bioactivity,” Tammela said.

Original research

Tuomas Pylkkö, Yannik Karl-Heinz Schneider, Teppo Rämä, Jeanette Hammer Andersen, Päivi Tammela. Bioprospecting of inhibitors of EPEC virulence from metabolites of marine actinobacteria from the Arctic Sea. Frontiers in Microbiology, Volume 15 - 2024. DOI:10.3389/fmicb.2024.1432475

Popular Posts

Cogon grass (Imperata cylindrica)

Alang-alang or cogon grass ( Imperata cylindrica ) is a plant species in Poaceae, annual grass, sharp leaf, long buds and scaly, creeping under the ground, very adaptive and grows in all climates which often become weeds on agricultural land. I. cylindrica has a sharp pointed tip of the bud and emerges from the ground, height of 0.2-1.5 m but in other places it may be more, short stems, rising up to the ground and flowering white or purplish, often with wreath of hair under the segment. Leaf strands in the form of long ribbons, lancet-tipped with a narrow base and gutter-shaped, 12-80 cm long, very coarse edge and jagged sharply, long hair at the base with broad, pale leaf bones in the middle. The flowers are panicles, 6-28 cm long with long-haired and white-colored ears for 1 cm which are used as a tool to blow off the fruit when ripe. Cogon grass breeds quickly with seeds that spread quickly with the wind or through rhizomes that quickly penetrate the soil. Alang-alang does...

Ralph Holzenthal caddisfly (Rhyacophila lignumvallis) from Corsica in Rhyacophila tristis (Schmid 1970) group

NEWS - Ralph Holzenthal caddisfly ( Rhyacophila lignumvallis Graf & Rázuri-Gonzales, sp. nov.) from the island of Corsica (France) was established as a new species in the Rhyacophila tristis (Schmid 1970) group based on morphological analysis and the mitochondrial cytochrome c oxidase subunit I (mtCOI), including sequences from 16 of the 28 species in the group. Rhyacophila Pictet 1834 with 814 living and 30 fossil species is the largest genus of caddisflies in the world, distributed mainly in the northern hemisphere, but also in temperate and tropical India and Southeast Asia. One of the groups is the R. tristis group in the branch Rhyacophila invaria . R. lignumvallis is most similar to Rhyacophila pubescens Pictet 1834, Rhyacophila tsurakiana Malicky 1984, Rhyacophila ligurica Oláh & Vinçon 2021, Rhyacophila harmasa Oláh & Vinçon 2021 and Rhyacophila abruzzica Oláh & Vinçon 2021. However, R. lignumvallis differs in the shape of the X tergum, the dorsal arm ...

Thomas Sutikna lives with Homo floresiensis

BLOG - On October 28, 2004, a paper was published in Nature describing the dwarf hominin we know today as Homo floresiensis that has shocked the world. The report changed the geographical landscape of early humans that previously stated that the Pleistocene Asia was only represented by two species, Homo erectus and Homo sapiens . The report titled "A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia" written by Peter Brown and Mike J. Morwood from the University of New England with Thomas Sutikna, Raden Pandji Soejono, Jatmiko, E. Wahyu Saptomo and Rokus Awe Due from the National Archaeology Research Institute (ARKENAS), Indonesia, presents more diversity in the genus Homo. “Immediately, my fever vanished. I couldn’t sleep well that night. I couldn’t wait for sunrise. In the early morning we went to the site, and when we arrived in the cave, I didn’t say a thing because both my mind and heart couldn’t handle this incredible moment. I just went down...