Skip to main content

Gametophyte evolution, Hymenasplenium murakami-hatanakae Nakaike, the fifth family to produce independent gametophytes

NEWS - Nakaike spleenwort (Hymenasplenium murakami-hatanakae Nakaike) can survive for long periods without a spore-producing sporophyte. Researchers report that H. murakami-hatanakae undergoes alternation of generations as an independent gametophyte, the only one in the suborder Eupolypods II (Aspleniinae).

Gametophyte evolution, Hymenasplenium murakami-hatanakae Nakaike, the fifth family to produce independent gametophytes

Aspleniineae appear to have evolved independent gametophytes to adapt to rocky and isolated environments. The research opens the way to elucidating gametophyte evolution and other important questions in plant ecology. A diversity of fern species reproduce and fill environmental niches.

Noriaki Murakami of Tokyo Metropolitan University in Tokyo, along with a team from Showa University in Yamanashi, and the National Museum of Nature and Science in Ibaraki, collected specimens from Izu-Oshima Island in southeastern Japan, and used DNA analysis to trace the generations.

Aspleniineae is a suborder called Eupolypods II that includes 30 percent of the ferns on Earth and is a rare group. Studying this species further promises to reveal more about how ferns diversify and adapt.

Plants and algae have a complex cycle that they use to reproduce. Each species has two generations in the cycle, a sporophyte that has two sets of chromosomes (diploid) and a gametophyte that has one (haploid). When the gametophyte matures, it produces gametes to produce a diploid zygote.

The zygote continues to divide and eventually becomes a sporophyte. The sporophyte produces spores through a process that halves the number of chromosomes. These spores divide and develop into gametophytes, and the cycle continues.

Sporophytes and gametophytes generally depend on each other for nutrition, but ferns have a special place in biology because they are independent of each other, raising the intriguing possibility that they can live long periods without each other or live as independent gametophytes.

Murakami and his team collected H. murakami-hatanakae that live in dark, humid environments on rocks along warm-climate rivers in Japan and Taiwan. The team collected specimens on Izu-Oshima Island and used DNA techniques to identify the species. DNA extracted from chloroplasts to identify sporophytes and gametophytes was then compared. They found that the gametophytes of this species can survive for long periods in an environment completely isolated from the spores.

Original research

Yoneoka, K., Fujiwara, T., Kataoka, T. et al. Morphological and functional evolution of gametophytes in epilithic Hymenasplenium murakami-hatanakae (Aspleniaceae): The fifth family capable of producing the independent gametophytes. Journal of Plant Research (2024). DOI:10.1007/s10265-024-01553-0

Popular Posts

Pohpohan (Pilea melastomoides)

Pohpohan clearweed ( Pilea melastomoides ) is a species of plant in the Urticaceae, herbaceous perennial, erect stems, up to 100 cm tall, succulent, square or cylindrical, enlarged in the middle of the internodes, bright green in color and forming colonies in the shade. P. melastomoides has stipules that are immediately deciduous or subpersistent, green or brownish and oblong. The stalk is 2-9 cm long. The leaf blade is ovate or ovate-elliptic or oblong-lanceolate. The surface is wavy, pale green on the underside, dark green on the top. The three main veins are central and linear. Rounded base, tapered ends and serrated edges. The inflorescences are paired, the male is a dense cyme paniculata. Kingdom: Plantae Phylum: Tracheophyta Subphylum: Angiospermae Class: Magnoliopsida Order: Rosales Family: Urticaceae Genus: Pilea Species: Pilea melastomoides

Humpback whales (Megaptera novaeangliae) manufacture bubble-nets as tools to increase prey intake

NEWS - Humpback whales ( Megaptera novaeangliae ) create bubble net tools while foraging, consisting of internal tangential rings, and actively control the number of rings, their size, depth and horizontal spacing between the surrounding bubbles. These structural elements of the net increase prey intake sevenfold. Researchers have known that humpback whales create “bubble nets” for hunting, but the new report shows that the animals also manipulate them in a variety of ways to maximize catches. The behavior places humpbacks among the rare animals that make and use their own tools. “Many animals use tools to help them find food, but very few actually make or modify these tools themselves,” said Lars Bejder, director of the Marine Mammal Research Program (MMRP), University of Hawaii at Manoa. “Humpback whales in southeast Alaska create elaborate bubble nets to catch krill. They skillfully blow bubbles in patterns that form a web with internal rings. They actively control details such ...

Señorita banana (Musa acuminata AA Group 'Señorita')

Pisang mas or señorita banana ( Musa acuminata AA Group 'Señorita') is a cultivar in Musaceae, a banana with a cylindrical shape and bright yellow skin when ripe, one of the banana cultivars with the shortest fruit and has small seeds or no seeds. M. acuminata (AA Group) 'Señorita' emerged from a completely buried tuber. Stem formed as a pseudostem with heaps of leaf sheaths and succulent, soft, up to 2.5 m high, 42 cm girth at 1 m high. The pseudo stem is green and shiny with a pink-purple base color. The leaf blade is elongated, waxy with a stalk that is sometimes bordered from pink-purple to red, 120 cm long, 45 cm wide and impermeable. The inflorescences hang vertically with red-purple bracts which are yellow or green on the inner surface. Yellow male flowers. The plants start to flower about 231 days after planting. The period from flowering to harvest is 40 days. The fruit is 8.5 cm long, 3.4 cm wide, straight with rounded cross section and bottle-necked ape...