Skip to main content

Mycobacterium spongiae in marine sponge provides insights into evolution and virulence of tubercle bacilli

NEWS - Researchers have described the bacterium Mycobacterium spongiae found in marine sponges collected near Cooktown, Queensland. The team from the Peter Doherty Institute for Infection and Immunity at the University of Melbourne reports the microbe could provide new insights into the evolution of pathogenic bacteria.

Mycobacterium spongiae in marine sponge provides insights into evolution and virulence of tubercle bacilli

The surprising discovery of bacteria in marine sponges from the Great Barrier Reef that closely resemble Mycobacterium tuberculosis, the pathogen responsible for tuberculosis (TB), could unlock future TB treatment strategies.

Sea sponges, often referred to as “chemical factories”, are a valuable source of bioactive compounds with anticancer, antibacterial, antiviral and anti-inflammatory properties. The researchers discovered the puzzling bacteria while studying sponge specimens for the bacteria that produce the chemicals.

The team carried out extensive analysis of the genes, proteins and lipids of M. spongiae (strain ID: FSD4b-SM). They found the bacteria shared 80% of their genetic material with M. tuberculosis, including several key genes associated with their ability to cause disease.

"We were very surprised to find that this bacterium is a close relative of M. tuberculosis," said Sacha Pidot from the Doherty Institute.

Tuberculosis is one of the world's deadliest infectious diseases, but the origins of M. tuberculosis are still poorly understood. Now the University of Melbourne team has found that M. spongiae does not cause disease in mice, meaning it is not virulent.

"This discovery provides new insights into the evolution of M. tuberculosis, suggesting that this pathogen may have originated from marine mycobacteria. This new knowledge is an important foundation for future research," said Timothy Stinear from the Doherty Institute.

"While there is still much work to be done, this discovery is an important part of understanding how TB became such a serious disease. Our findings could help to identify the link to M. tuberculosis for the development of new strategies such as vaccines to prevent tuberculosis," Stinear said.

Mycobacterium was first officially described by Lehmann & Neumann (1896) in the Atlas und Grundriss der Bacteriologie und Lehrbuch der Speziellen bakteriologischen Diagnostik. To date there are more than 190 officially recorded species.

Original research

Pidot SJ, Klatt S, Ates LS, Frigui W, Sayes F, Majlessi L, et al. (2024) Marine sponge microbe provides insights into evolution and virulence of the tubercle bacillus. PLOS Pathogens 20(8): e1012440. DOI:10.1371/journal.ppat.1012440

Popular Posts

Bush sorrel (Hibiscus surattensis)

Bush sorrel ( Hibiscus surattensis ) is a plant species in Malvaceae, annual shrub, crawling on the surface or climbing, up to 3 meters long, thorny stems, green leaves, yellow trumpet flowers, grows wild in forests and canal edges, widely used for vegetables and treatment. H. surattensis has stems with spines and hairs, branching and reddish green. Petiole emerges from the stem with a straight edge to the side, up to 11 cm long, sturdy, thorny, hairy and reddish green. The leaves have a length of 10 cm, width of 10 cm, 3-5 lobed, each has a bone in the middle with several pinnate veins, sharp tip, sharp and jagged edges, wavy, stiff, green surface. Flowers up to 10 cm long, trumpet-shaped, yellow with a purple or brown or red center, solitary, axillary. Epicalyx has forked bracts, linear inner branches, spathulate outer branches. Stalks up to 6-7 cm. The seeds have a length of 3-3.5 mm and a width of 2.5 mm. Bush sorrels grow in pastures, marshes, abandoned fields and plantations, ...

Perlis fairy lantern (Thismia perlisensis) resembling Thismia arachnites Ridley and Thismia javanica J.J.Sm.

NEWS - Perlis fairy lantern ( Thismia perlisensis Besi & Rusea sp. nov.) was discovered during a scientific expedition in a wetland forest at the foot of a limestone hill, Perlis State Park, resembling Thismia arachnites Ridley (1905) and Thismia javanica J.J.Sm. (1910), but has a prominent reddish dome-shaped annulus. Thismia perlisensis can be easily distinguished from T. arachnites and T. javanica by its blood-red dome-shaped annulus (vs. ring-like with a rim, orange annulus), prominent trilobed stigma with bifid and subulate lobes 1.8 mm long (vs. oblong, truncated stigma), and claviform apex of inner tepal appendage (vs. subulate apex of inner tepal appendage). Stenoendemic to northern Peninsular Malaysia, Perlis State and possibly Langkawi Island. Although there have been sightings of the plant on Langkawi Island, this location is based solely on photos posted on social media. There are currently no specimens or additional information to confirm. The new species grows in...

Six new species forming the Sumbana species group in genus Nemophora Hoffmannsegg 1798 from Indonesia

NEWS - Sumbawa longhorn ( Nemophora sumbana Kozlov, sp. nov.), Timor longhorn ( Nemophora timorella Kozlov, sp. nov.), shining shade longhorn ( Nemophora umbronitidella Kozlov, sp. nov.), Wegner longhorn ( Nemophora wegneri Kozlov, sp. nov.), long brush longhorn ( Nemophora longipeniculella Kozlov, sp. nov.), and short brush longhorn ( Nemophora brevipeniculella Kozlov, sp. nov.) from the Lesser Sunda Islands in Indonesia. The Lesser Sunda Islands consist of two parallel, linear oceanic island chains, including Bali, Lombok, Sumbawa, Flores, Sumba, Sawu, Timor, Alor, and Tanimbar. The oldest of these islands have been continuously occurring for 10–12 million years. This long period of isolation has allowed significant in situ diversification, making the Lesser Sundas home to many endemic species. This island chain may act as a two-way filter for organisms migrating between the world's two great biogeographic regions, Asia and Australia-Papua. The recognition of a striking cli...