Skip to main content

Pythons reprogram postprandial cardiac hypertrophy metabolism to stay healthy

NEWS - Wild cylindrical pythons, a few centimeters in diameter and several feet long, can stretch as long as a power pole and swallow a deer or crocodile whole. They fast for long periods of time, but when they eat large amounts of food, they don’t cause any tissue damage.

Pythons reprogram postprandial cardiac hypertrophy metabolism to stay healthy

In the first 24 hours after devouring a large prey item, the tissues soften dramatically, while the heart grows 25% and becomes more tense until the pulse rate doubles. The blood flow turns milky white because of circulating fat, but surprisingly it is healthy rather than damaging to the tissue.

A large group of special genes kick into action to help increase metabolism by a factor of forty. Two weeks later, after the food has been digested, all systems are back to normal, the heart remains slightly larger and even stronger than before.

The researchers report that this remarkable process could inspire new treatments for the heart condition cardiac fibrosis and a number of other modern human diseases that are miraculously able to do so by giant snakes. Pythons have mechanisms to protect the heart from things that could be harmful.

“Pythons can go months or even a year in the wild without eating and then eat something larger than their own body mass and nothing bad happens to them,” says Leslie Leinwand of the University of Colorado at Boulder, who has been studying pythons for nearly two decades.

“Most people use rats and mice as animal models to study disease and health, but there’s a lot to learn from animals like pythons that have evolved ways to survive in extreme environments,” Leinwand says.

Pythons have healthy heart development similar to that of elite athletes. The researchers found that well-fed snakes’ hearts enlarge, with bundles of specialized heart muscle called myofibrils softening dramatically and contracting with 50% more force.


They have different metabolites in their blood, genes that are turned on or off to change metabolism and the strength of contractions. More research is needed to identify the exact genes and metabolites that are at play. Several things may be driving pythons’ hearts to burn fat instead of sugar for fuel.

Original research

Claudia Crocini et al (2024). Postprandial cardiac hypertrophy is sustained by mechanics, epigenetic, and metabolic reprogramming in pythons. Proceedings of the National Academy of Sciences, 121 (36) e2322726121 DOI:10.1073/pnas.2322726121

Popular Posts

Cogon grass (Imperata cylindrica)

Alang-alang or cogon grass ( Imperata cylindrica ) is a plant species in Poaceae, annual grass, sharp leaf, long buds and scaly, creeping under the ground, very adaptive and grows in all climates which often become weeds on agricultural land. I. cylindrica has a sharp pointed tip of the bud and emerges from the ground, height of 0.2-1.5 m but in other places it may be more, short stems, rising up to the ground and flowering white or purplish, often with wreath of hair under the segment. Leaf strands in the form of long ribbons, lancet-tipped with a narrow base and gutter-shaped, 12-80 cm long, very coarse edge and jagged sharply, long hair at the base with broad, pale leaf bones in the middle. The flowers are panicles, 6-28 cm long with long-haired and white-colored ears for 1 cm which are used as a tool to blow off the fruit when ripe. Cogon grass breeds quickly with seeds that spread quickly with the wind or through rhizomes that quickly penetrate the soil. Alang-alang does...

Ralph Holzenthal caddisfly (Rhyacophila lignumvallis) from Corsica in Rhyacophila tristis (Schmid 1970) group

NEWS - Ralph Holzenthal caddisfly ( Rhyacophila lignumvallis Graf & Rázuri-Gonzales, sp. nov.) from the island of Corsica (France) was established as a new species in the Rhyacophila tristis (Schmid 1970) group based on morphological analysis and the mitochondrial cytochrome c oxidase subunit I (mtCOI), including sequences from 16 of the 28 species in the group. Rhyacophila Pictet 1834 with 814 living and 30 fossil species is the largest genus of caddisflies in the world, distributed mainly in the northern hemisphere, but also in temperate and tropical India and Southeast Asia. One of the groups is the R. tristis group in the branch Rhyacophila invaria . R. lignumvallis is most similar to Rhyacophila pubescens Pictet 1834, Rhyacophila tsurakiana Malicky 1984, Rhyacophila ligurica Oláh & Vinçon 2021, Rhyacophila harmasa Oláh & Vinçon 2021 and Rhyacophila abruzzica Oláh & Vinçon 2021. However, R. lignumvallis differs in the shape of the X tergum, the dorsal arm ...

Solanum chrysotrichum and Solanum torvum, the differences

SPECIES HEAD TO HEAD - Nightshades ( Solanum L.) is a large genus of over 1230 officially recorded species that grow worldwide, especially in the tropics. Two species, the giant devil's fig ( Solanum chrysotrichum Schltdl.) and the Turkey berry ( Solanum torvum Sw.) have similar flowers and fruits. To differentiate, you need the size of the leaves. S. chrysotrichum is a small to medium-sized tree and grows mostly at elevations of 1500-2500 meters. The leaves are up to 68 cm long, up to 65 cm wide and the petioles are up to 27 cm long. S. torvum is a shrub to small tree and grows mostly at elevations of 0-1000 meters. The leaves are about 19 cm long, about 15 cm wide and the petioles are about 5 cm long. By Aryo Bandoro Founder of Dlium.com . You can follow him on X: @Abandoro . Read more: Solanum chrysotrichum Solanum torvum