Skip to main content

Pythons reprogram postprandial cardiac hypertrophy metabolism to stay healthy

NEWS - Wild cylindrical pythons, a few centimeters in diameter and several feet long, can stretch as long as a power pole and swallow a deer or crocodile whole. They fast for long periods of time, but when they eat large amounts of food, they don’t cause any tissue damage.

Pythons reprogram postprandial cardiac hypertrophy metabolism to stay healthy

In the first 24 hours after devouring a large prey item, the tissues soften dramatically, while the heart grows 25% and becomes more tense until the pulse rate doubles. The blood flow turns milky white because of circulating fat, but surprisingly it is healthy rather than damaging to the tissue.

A large group of special genes kick into action to help increase metabolism by a factor of forty. Two weeks later, after the food has been digested, all systems are back to normal, the heart remains slightly larger and even stronger than before.

The researchers report that this remarkable process could inspire new treatments for the heart condition cardiac fibrosis and a number of other modern human diseases that are miraculously able to do so by giant snakes. Pythons have mechanisms to protect the heart from things that could be harmful.

“Pythons can go months or even a year in the wild without eating and then eat something larger than their own body mass and nothing bad happens to them,” says Leslie Leinwand of the University of Colorado at Boulder, who has been studying pythons for nearly two decades.

“Most people use rats and mice as animal models to study disease and health, but there’s a lot to learn from animals like pythons that have evolved ways to survive in extreme environments,” Leinwand says.

Pythons have healthy heart development similar to that of elite athletes. The researchers found that well-fed snakes’ hearts enlarge, with bundles of specialized heart muscle called myofibrils softening dramatically and contracting with 50% more force.


They have different metabolites in their blood, genes that are turned on or off to change metabolism and the strength of contractions. More research is needed to identify the exact genes and metabolites that are at play. Several things may be driving pythons’ hearts to burn fat instead of sugar for fuel.

Original research

Claudia Crocini et al (2024). Postprandial cardiac hypertrophy is sustained by mechanics, epigenetic, and metabolic reprogramming in pythons. Proceedings of the National Academy of Sciences, 121 (36) e2322726121 DOI:10.1073/pnas.2322726121

Popular Posts

Humpback whales (Megaptera novaeangliae) manufacture bubble-nets as tools to increase prey intake

NEWS - Humpback whales ( Megaptera novaeangliae ) create bubble net tools while foraging, consisting of internal tangential rings, and actively control the number of rings, their size, depth and horizontal spacing between the surrounding bubbles. These structural elements of the net increase prey intake sevenfold. Researchers have known that humpback whales create “bubble nets” for hunting, but the new report shows that the animals also manipulate them in a variety of ways to maximize catches. The behavior places humpbacks among the rare animals that make and use their own tools. “Many animals use tools to help them find food, but very few actually make or modify these tools themselves,” said Lars Bejder, director of the Marine Mammal Research Program (MMRP), University of Hawaii at Manoa. “Humpback whales in southeast Alaska create elaborate bubble nets to catch krill. They skillfully blow bubbles in patterns that form a web with internal rings. They actively control details such ...

Thomas Sutikna lives with Homo floresiensis

BLOG - On October 28, 2004, a paper was published in Nature describing the dwarf hominin we know today as Homo floresiensis that has shocked the world. The report changed the geographical landscape of early humans that previously stated that the Pleistocene Asia was only represented by two species, Homo erectus and Homo sapiens . The report titled "A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia" written by Peter Brown and Mike J. Morwood from the University of New England with Thomas Sutikna, Raden Pandji Soejono, Jatmiko, E. Wahyu Saptomo and Rokus Awe Due from the National Archaeology Research Institute (ARKENAS), Indonesia, presents more diversity in the genus Homo. “Immediately, my fever vanished. I couldn’t sleep well that night. I couldn’t wait for sunrise. In the early morning we went to the site, and when we arrived in the cave, I didn’t say a thing because both my mind and heart couldn’t handle this incredible moment. I just went down...

False nettle (Boehmeria cylindrica)

False nettle ( Boehmeria cylindrica ) is a species of plant in the Urticaceae family, a herb or small shrub, up to 160 cm tall, usually monoecious but rarely dioecious. The leaves are paired or alternate, and the inflorescence is a spikelet with a cluster of small bracts at the tip. B. cylindrica generally grows to a height of 50-100 cm. Spine-like hairs form in the leaf axils. The leaves are oval and up to 10 cm long and 4 cm wide. The flowers are green or greenish-white and emerge from the upper leaf axils. Male and female flowers usually grow on separate plants. Male flowers are more numerous among the spikes in clusters. Female flowers are less evenly distributed along the spikes. The small, oval seeds are covered with small, hook-like hairs. Ripe seeds are dark brown. The inflorescence resembles a spike and is up to 3 cm long. This species can be found in moist to mesic deciduous forest habitats, growing abundantly along streambanks, floodplains, and lowlands. B. cylindrica is ...