Skip to main content

Turning Rhodomicrobium bacteria into bioplastic factories

NEWS - Scientists are looking for alternative plastic products that are more sustainable, more biodegradable and far less toxic to the environment. Researchers at Washington University in St. Louis are using Rhodopseudomonas palustris, Rhodomicrobium vannielii and Rhodomicrobium udaipurense to replace petroleum-based plastics.

Turning Rhodomicrobium bacteria into bioplastic factories

The bacteria, with a little encouragement, are expected to become microscopic factories for bioplastics. The ability to produce polyhydroxyalkanoates (PHAs), natural polymers that can be purified to make plastics. Eventually, genetic engineering could coax the bacteria to increase their PHA production.

"There is a huge global demand for bioplastics. They can be produced without adding CO2 to the atmosphere and are completely biodegradable. Our two studies show the importance of taking a multi-pronged approach to finding new ways to produce these valuable materials," said Arpita Bose of Wash. University.

Purple bacteria are a special group of aquatic microbes that have the ability to adapt and create useful compounds from simple ingredients. They can convert carbon dioxide into food using energy from the sun. Another pigment to capture sunlight instead of green chlorophyll.

The researchers assessed the photosynthetic purple non-sulfur bacteria R. vannielii and R. udaipurense for their ability to accumulate PHA across photo-heterotrophic, photo-hydrogenotrophic, photo-ferrotrophic and photo-electrotrophic growth conditions with ammonium chloride (NH4Cl) or dinitrogen gas (N2) as the nitrogen source.

They naturally produce PHA and other bioplastic building blocks to store extra carbon. Under the right conditions, they can continue producing the polymers indefinitely. There is a tremendous appetite for producing polymers, especially when energized with small amounts of electricity and fed with nitrogen.

“We have to look at bacteria that we’ve never seen before. We haven’t been able to realize their potential. These are unique bacteria that look very different from other purple bacteria,” said Eric Conners of Wash. University.

Rhodomicrobium bacteria have unusual properties that make them interesting contenders as natural bioplastic factories. While some species live in culture as individual cells, this particular genus forms interconnected networks that seem particularly well-suited to producing PHAs.

Other types of bacteria can also produce bioplastic polymers, with the help of genetic engineering to produce impressive levels of PHA from Rhodopseudomonas palustris TIE-1, a well-studied species that is typically reluctant to produce polymers.

“TIE-1 is a great organism to study, but historically it’s not the best at producing PHAs,” said Tahina Ranaivoarisoa of Wash. University.

Several genetic changes have helped boost PHA production, but one approach has been particularly successful. The researchers saw impressive results when they inserted a gene that enhances the natural enzyme RuBisCO, a catalyst that helps plants and bacteria capture carbon from the air and water.

Inserting a copy of the RuBisCO gene into the TIE-1 genome was a more effective strategy than deleting competing pathways to boost PHA production in TIE-1. The successful use of the phage integration system opens up a wealth of opportunities for synthetic biology in TIE-1.

The normally sluggish bacteria became relatively large PHA powerhouses after being given the super-potent enzyme. The researchers are optimistic that a similar approach could be applied to other bacteria that might be able to produce bioplastics in greater quantities.

Original research

Ranaivoarisoa TO, Bai W, Karthikeyan R, Steele H, Silberman M, Olabode J, Conners E, Gallagher B, Bose A. 0. Overexpression of RuBisCO form I and II genes in Rhodopseudomonas palustris TIE-1 augments polyhydroxyalkanoate production heterotrophically and autotrophically. Applied and Industrial Microbiology 0:e01438-24 (2024). DOI:10.1128/aem.01438-24

Eric M. Conners, Karthikeyan Rengasamy, Tahina Ranaivoarisoa, Arpita Bose. The phototrophic purple non-sulfur bacteria Rhodomicrobium spp. are novel chassis for bioplastic production. Microbial Biotechnology, Volume17, Issue 8, August 2024, e14552 DOI:10.1111/1751-7915.14552

Popular Posts

Cogon grass (Imperata cylindrica)

Alang-alang or cogon grass ( Imperata cylindrica ) is a plant species in Poaceae, annual grass, sharp leaf, long buds and scaly, creeping under the ground, very adaptive and grows in all climates which often become weeds on agricultural land. I. cylindrica has a sharp pointed tip of the bud and emerges from the ground, height of 0.2-1.5 m but in other places it may be more, short stems, rising up to the ground and flowering white or purplish, often with wreath of hair under the segment. Leaf strands in the form of long ribbons, lancet-tipped with a narrow base and gutter-shaped, 12-80 cm long, very coarse edge and jagged sharply, long hair at the base with broad, pale leaf bones in the middle. The flowers are panicles, 6-28 cm long with long-haired and white-colored ears for 1 cm which are used as a tool to blow off the fruit when ripe. Cogon grass breeds quickly with seeds that spread quickly with the wind or through rhizomes that quickly penetrate the soil. Alang-alang does...

Ralph Holzenthal caddisfly (Rhyacophila lignumvallis) from Corsica in Rhyacophila tristis (Schmid 1970) group

NEWS - Ralph Holzenthal caddisfly ( Rhyacophila lignumvallis Graf & Rázuri-Gonzales, sp. nov.) from the island of Corsica (France) was established as a new species in the Rhyacophila tristis (Schmid 1970) group based on morphological analysis and the mitochondrial cytochrome c oxidase subunit I (mtCOI), including sequences from 16 of the 28 species in the group. Rhyacophila Pictet 1834 with 814 living and 30 fossil species is the largest genus of caddisflies in the world, distributed mainly in the northern hemisphere, but also in temperate and tropical India and Southeast Asia. One of the groups is the R. tristis group in the branch Rhyacophila invaria . R. lignumvallis is most similar to Rhyacophila pubescens Pictet 1834, Rhyacophila tsurakiana Malicky 1984, Rhyacophila ligurica Oláh & Vinçon 2021, Rhyacophila harmasa Oláh & Vinçon 2021 and Rhyacophila abruzzica Oláh & Vinçon 2021. However, R. lignumvallis differs in the shape of the X tergum, the dorsal arm ...

Solanum chrysotrichum and Solanum torvum, the differences

SPECIES HEAD TO HEAD - Nightshades ( Solanum L.) is a large genus of over 1230 officially recorded species that grow worldwide, especially in the tropics. Two species, the giant devil's fig ( Solanum chrysotrichum Schltdl.) and the Turkey berry ( Solanum torvum Sw.) have similar flowers and fruits. To differentiate, you need the size of the leaves. S. chrysotrichum is a small to medium-sized tree and grows mostly at elevations of 1500-2500 meters. The leaves are up to 68 cm long, up to 65 cm wide and the petioles are up to 27 cm long. S. torvum is a shrub to small tree and grows mostly at elevations of 0-1000 meters. The leaves are about 19 cm long, about 15 cm wide and the petioles are about 5 cm long. By Aryo Bandoro Founder of Dlium.com . You can follow him on X: @Abandoro . Read more: Solanum chrysotrichum Solanum torvum