Skip to main content

Zebrafish able to regenerate injured spinal cord

NEWS - Zebrafish are members of a rare group of vertebrates that can completely heal a severed spinal cord. A clear understanding of how this regeneration occurs could provide clues to strategies for treating injuries that cause permanent loss of sensation and movement.

Dlium Zebrafish able to regenerate injured spinal cord

The researchers mapped out a detailed atlas of all the cells involved in regenerating the zebrafish spinal cord. Stem cells capable of forming new neurons are typically thought of as central to regeneration, playing a complementary role but not leading the process.

Damaged neurons always die after spinal cord injury in humans and other mammals, but damaged neurons in zebrafish drastically change their cellular functions in response to injury to survive and then take on new roles to orchestrate healing.

“We found that most of the aspects of neural repair that we are trying to achieve in humans occur naturally in zebrafish,” says Mayssa Mokalled of Washington University School of Medicine in St. Louis.

Unlike organ regeneration mechanisms in several animals, robust neural repair and protection mechanisms occur immediately after injury in zebrafish. These protective mechanisms allow neurons to survive the injury and then adopt spontaneous plasticity.

Zebrafish get time to regenerate new neurons to achieve full recovery. Researchers have identified genetic targets that could help enhance this type of plasticity in cells from humans and other mammals.

The flexibility of injured neurons that survive injury and their ability to quickly reprogram after injury are a necessary sequence of events for spinal cord regeneration. If these neurons that survive injury are disabled, zebrafish do not regain their normal swimming capacity, even though regenerative stem cells remain.

When the long cord of the spinal cord is compressed or severed in humans and other mammals, a cascade of toxic events sets off neurons that kill and render the spinal cord environment hostile to repair mechanisms.

This neuronal toxicity has frustrated efforts to use stem cells to treat spinal cord injury. Mokalled suggests that any approach to treating spinal cord injury in humans must begin by saving injured neurons from death.

“Neurons without connections to other cells cannot survive. In zebrafish, severed neurons can cope with the stress of injury because their flexibility helps them quickly establish new local connections,” Mokalled says.

This temporary mechanism buys time, protecting neurons from death and allowing the system to preserve neuronal circuits while the primary spinal cord rebuilds and regenerates. There is some evidence that this capacity exists in mammals but is dormant.

"We hope that identifying the gene that regulates this protective process in zebrafish with a version that is also present in the human genome will help find a way to protect neurons in humans from the wave of cell death that we see after spinal cord injury," Mokalled said.

Spinal cord regeneration is complex, and future work will include investigating new cell atlases to understand the contribution of other cell types to spinal cord regeneration, including non-neuronal cells called glia in the central nervous system, immune system cells and blood vessels.

Original research

Saraswathy, V.M., Zhou, L. & Mokalled, M.H. Single-cell analysis of innate spinal cord regeneration identifies intersecting modes of neuronal repair. Nature communications 15, 6808 (2024). DOI:10.1038/s41467-024-50628-y

Popular Posts

Blood lily (Scadoxus multiflorus)

Blood lily or Haemanthus multiflorus ( Scadoxus multiflorus ) is a species of plant in the Amaryllidaceae, a bulbous shrub that produces rhizomes. Leaves and flowers may appear together or leaves may be produced later. The base of the leaves and stems are tightly wrapped to form a pseudo-stem or false stem, 5-60 cm long. Flowers in umbels at the top of the stem, leafless, 12-75 cm long. Pseudostems and scapes are often covered with reddish brown to dark purple spots. The flower umbel is in the shape of a globe with 10-200 individual flowers. Each flower has a stalk, 15-45 mm long. The tepals and filaments of the stamens are red. The base of the tepals is fused to form a cylindrical tube, 4-26 mm long, the free end of the tepals 12-32 mm long, narrow and spreading. The fruit is a berry having a diameter of 5-10 mm. Kingdom: Plantae Phylum: Tracheophyta Subphylum: Angiospermae Class: Liliopsida Order: Asparagales Family: Amaryllidaceae Subfamily: Amaryllidoideae Tribe: Haemantheae Ge...

Guinea grass (Panicum maximum)

Guinea grass or buffalo grass or green panic ( Panicum maximum ) is a plant species in Poaceae, annual grasses, growing upright to form clumps, strong, cultivated in all tropical and subtropical regions for very high value as fodder. P. maximum reproduces in very large pols, fibrous roots penetrate into the soil, upright stems, green, 1-1.5 m tall and have smooth cavities for diameters up to 2.5 mm. Propagation is done vegetatively and generatively. Ribbon-shaped leaves with a pointed tip, very many, built in lines, green, 40-105 cm long, 10-30 mm wide, erect, branched, a white linear bone, often covered with a layer of white wax, rough surface by hair short, dense and spread. The flower grows at the end of a long and upright stalk, open with the main axis length to more than 25 cm and the length of the bunches down to 20 cm. Grains have a size of 3x4 mm and oval. Seeds have a length of 2.25-2.50 mm and each 1 kg contains 1.2 - 1.5 million seeds. Guinea grass has two varieties. P...

Indian shot (Canna indica)

Puspa midra or Indian shot ( Canna indica ) is is plant species in Cannaceae, annual, shrub 0.5-2.5 meters high, depending on variety, erect stems, unbranched and leaf midrib arranged overlapping to form pseudostems and hermaphrodite flowers. C. indica forms a branched rhizome, 60 cm long which is divided into rounded segments and is covered in two stripes by pale green or purple scaly leaves. The rhizome has tubers that contain very large starch grains. The surface has transverse furrows, the underside appears white roots and numerous shoots. The leaves sit alternate and spiral or arranged in two rows, very large and divided into a leaf midrib, short stalk and blade. The strands are 30-60 cm long, 10-20 cm wide and have linear veins, green or purple-green, the base blunt or narrowly pointed and the apex immediately tapering or sharp. Hermaphrodite flowers, pedicels 0.2-1 cm long and red or yellow-orange, except in some cultivars 4.5-7.5 cm long. The sepals are triangular in shape a...