Skip to main content

Albatrosses and Penguins use highly sensitive beaks to find food

Albatrosses and Penguins use highly sensitive beaks to find food

NEWS - Penguins and albatrosses have highly sensitive areas on their beaks to help them find food. An international team of researchers studied more than 350 modern bird species and found that seabirds have a high density of sensory receptors and nerves at the tip of their beaks that have previously been identified in specialist tactile feeders such as ducks.

This touch-sensitive area may have originated in a common ancestor and further research is needed to determine whether it has a specific function in modern birds. Further research into beaks and foraging behaviour could help conserve some birds, many of which are threatened with extinction.

Humans and other primates use their hands, but birds use their beaks to interact with the world around them. Some birds have special touch-sensitive areas at the tip of their beaks to help them find food, but this ability has not been widely studied and it is not known how the phenomenon evolved or how widespread it is.

“Many scientists assume that most birds have touch-sensitive beaks, but we haven’t investigated enough to know whether it is a general ability or whether it is restricted to certain bird families,” says Carla du Toit of the University of Cambridge.

Austrodyptornithes, which include albatrosses, petrels, penguins and many other bird species in this group, are critically endangered. Understanding how they find food using their beaks could be a valuable tool to aid conservation.

Du Toit and a team from the UK and South Africa studied 361 modern bird species based on fossil records, skeletons and birds accidentally killed by fishing lines and nets. The team focused on how the beaks are constructed and connected to nerves including blood vessels.

Albatrosses and penguins have sensory receptor organs with a high density and concentration of nerves in their beaks. Seabirds are not known to be tactile foragers. These sensitive beaks help them find food at night and underwater by detecting tiny vibrations from potential prey.

However, these sensitive areas may also be ‘leftover’ from a common ancestor in birds that had no special function, such as the beaks of ostriches and emus. Further research in living birds is needed to establish the exact purpose of these touch-sensitive areas to help determine how the ability evolved.



“This is the first time we’ve seen a touch-sensitive beak in a seabird. It’s remarkable that no-one has really studied this in detail, considering we all learn about the evolution of Darwin’s finches’ beaks at school,” du Toit said.

The findings play a role in conserving the 22 known albatross species, 15 of which are threatened with extinction and two are listed as critically endangered. Commercial fishing with fishing lines kills around 100,000 birds a year when they become entangled and drown.

“Of course, the bigger threats to birds like albatrosses are climate change, rising sea temperatures, plastic pollution and declining fish stocks. But if there’s a way to reduce the risk to seabirds, even in a small way, then it’s worth it. These are very special birds,” du Toit said.

Original research

du Toit Carla J., Bond Alexander L., Cunningham Susan J., Field Daniel J. and Portugal Steven J. (2024). Tactile bill-tip organs in seabirds suggest conservation of a deep avian symplesiomorphy. Biolgy Letters 2020240259, DOI:10.1098/rsbl.2024.0259

Dlium theDlium

Popular Posts

Humpback whales (Megaptera novaeangliae) manufacture bubble-nets as tools to increase prey intake

NEWS - Humpback whales ( Megaptera novaeangliae ) create bubble net tools while foraging, consisting of internal tangential rings, and actively control the number of rings, their size, depth and horizontal spacing between the surrounding bubbles. These structural elements of the net increase prey intake sevenfold. Researchers have known that humpback whales create “bubble nets” for hunting, but the new report shows that the animals also manipulate them in a variety of ways to maximize catches. The behavior places humpbacks among the rare animals that make and use their own tools. “Many animals use tools to help them find food, but very few actually make or modify these tools themselves,” said Lars Bejder, director of the Marine Mammal Research Program (MMRP), University of Hawaii at Manoa. “Humpback whales in southeast Alaska create elaborate bubble nets to catch krill. They skillfully blow bubbles in patterns that form a web with internal rings. They actively control details such ...

Longulus soldier beetle (Ichthyurus longulus) is the first of dozens new species to be published

NEWS - Researchers report a new species of Ichthyurus longulus that is widely distributed in Shanxi, Gansu, Hubei, Chongqing, Guizhou and Guangxi in China. This species has some variation in pronotum coloration but can be easily distinguished from all other species. I. longulus is easily distinguished from all species from China by its uniform black elytra, in contrast to the mixed black and yellow bicolor elytra in other species. Each mesotibia is present with an apical spur in males, while it is absent in other species. In addition, the terminal abdominal tergite is characterized by a long lateral projection, about 3/5 of the tergite length. Furthermore, the aedeagus has a long setifore extension that is almost as long as the parameres. The legs are slender and the terminal abdominal tergite has a simple lateral projection in males. The specific name is derived from the Latin word longus meaning long, referring to the long setifore extension. The body length for both sexes is 13.5-...

Javanese grasshopper (Valanga nigricornis)

Wooden grasshopper or Javanese grasshopper ( Valanga nigricornis ) is an animal species of Acrididae, grasshoppers that have at least 18 subspecies, insects with very wide diversity in color and size, sexual dimorphism in which females are larger in size and paler in color. V. nigricornis in males has a length of 45-55 millimeters and females 15-75 mm. The head is square and green or yellow or brown or black in color. A pair of antennas has a black color. The eyes are large and gray or white or brownish. The hind legs are very large and have a green or yellow or brown or black color, plain or brindle. The limbs have two rows of large and long spines with black tips facing backward. The wings have a length exceeding the belly, a rough surface and are brown or green or yellow or black in color with pulse lines forming spaces filled with black color. The hind wings are rose red which will be visible when flying. Nymphs are pale green or yellow or brown or blackish in color. Javanese gr...