Skip to main content

Arctic microalgae photosynthesis in darkness at theoretical minimum

NEWS - Microalgae require only one hundred thousandth of the amount of light available on Earth's surface for their growth. Photosynthesis can occur in nature even at very low light levels, allowing algae to build biomass when the sun is barely above the horizon.

Arctic microalgae photosynthesis in darkness at theoretical minimum

An international team of researchers used data from the MOSAiC expedition to investigate algae growth at the end of the polar night in northern latitudes and revealed that microalgae can build biomass through photosynthesis in the near-darkness of habitats beneath the snow and ice of the Arctic Ocean.

Photosynthesis in the Arctic Ocean occurs beneath the snow-covered sea ice, which allows only a few photons of incoming sunlight to pass through, but microalgae only have about one hundred thousandth of the amount of light available on Earth's surface for their growth.

"It is impressive to see how efficiently algae utilize such low amounts of light. This shows how well the organisms are adapted to their environment," says Clara Hoppe from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI).

Photosynthesis converts sunlight into energy, which is the basis of all life on the planet. However, previous measurements of the amount of light required for this have always been well above the theoretical minimum. The researchers show that biomass build-up can actually occur with light levels close to this minimum.

The research team froze the German icebreaker Polarstern in the central Arctic ice sheet for 12 months in 2019 to investigate the annual cycle of Arctic climate and ecosystems. Hoppe and his team focused on phytoplankton and ice algae, which are responsible for most of the photosynthesis in the central Arctic.

"To measure the very low light levels under the harsh Arctic winter conditions, we had to freeze a newly developed special instrument into the ice in the middle of the polar night," says Niels Fuchs from the University of Hamburg.

The measurements show that just a few days after the end of the month-long polar night, plant biomass builds up again, which is crucial for photosynthesis. Highly sensitive light sensors in the ice and water make it possible to measure the amount of available light.

The study was made possible by close collaboration between researchers from different disciplines to combine light field measurements with biological measurements. It is very difficult to account for irregularities in the light field under ice due to variations in the thickness of ice and snow.

"But in the end we can be sure that there is no more light," says Dirk Notz from the University of Hamburg.

The results of the study are important for the entire planet. Light for the production of energy and oxygen that can be used through photosynthesis in deeper ocean areas may also be available to fish. Suitable photosynthetic habitats in the global ocean could therefore be much larger than previously assumed.

"Although our results are specific to the Arctic Ocean, they show what photosynthesis is capable of. If photosynthesis is so efficient under challenging Arctic conditions, we assume that marine organisms in other regions are also very well adapted," says Choppe.

Original research

Hoppe, C.J.M., Fuchs, N., Notz, D. et al. Photosynthetic light requirement near the theoretical minimum detected in Arctic microalgae. Nature Communications 15, 7385 (2024), DOI:10.1038/s41467-024-51636-8

Popular Posts

Javan broadhead planarian (Bipalium javanum)

Cacing palu or Javan broadhead planarian ( Bipalium javanum ) is a species of animal in Geoplanidae, hermaphrodite, living on the ground, predators, often called only hammerhead or broadhead or shovel worms because of wide heads and simple copulatory organs. B. javanum has a slim stature, up to 20 cm long, up to 0.5 cm wide, head wide up to 1 cm or less, small neck, widening in the middle and the back end is rounded, all black and shiny. Javan broadhead planarians walk above ground level by raising their heads and actively looking left, right and looking up using strong neck muscles. Move swiftly, track meander, climb to get through all obstacles or make a new path if the obstacle is too high. Cacing palu track and prey on earthworms and mollusks. They use muscles and sticky secretions to attach themselves to prey to lock in. The head and ends of the body are wrapped around and continue to close the body to stop prey reactions. They produce tetrodotoxins which are very strong...

Thomas Sutikna lives with Homo floresiensis

BLOG - On October 28, 2004, a paper was published in Nature describing the dwarf hominin we know today as Homo floresiensis that has shocked the world. The report changed the geographical landscape of early humans that previously stated that the Pleistocene Asia was only represented by two species, Homo erectus and Homo sapiens . The report titled "A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia" written by Peter Brown and Mike J. Morwood from the University of New England with Thomas Sutikna, Raden Pandji Soejono, Jatmiko, E. Wahyu Saptomo and Rokus Awe Due from the National Archaeology Research Institute (ARKENAS), Indonesia, presents more diversity in the genus Homo. “Immediately, my fever vanished. I couldn’t sleep well that night. I couldn’t wait for sunrise. In the early morning we went to the site, and when we arrived in the cave, I didn’t say a thing because both my mind and heart couldn’t handle this incredible moment. I just went down...

Prof. Weiming Zhu ironwood (Xantolis weimingii) described with completely glabrous flower crowns

NEWS - Xantolis weimingii (Sapotaceae, Chrysophylloideae) is described from Yunnan, southwest China and can be easily distinguished from its relatives by the combination of densely covered plants with ferruginous arachnoid-lanate, oblong or obovate leaves and pendulous staminodes at the base. Xantolis Raf. 1838 (Sapotaceae, Chrysophylloideae) is a small genus of trees and shrubs containing about 14 species with a distribution from the eastern Himalayas to the Philippines in tropical Asia. The genus is morphologically characterized by distinct spines, a sharp anther appendage, lanceolate lobes on the calyx and corolla, and aristate staminodes. Molecular data suggest that the genus is sister to the entire subfamily Chrysophylloideae and is a very isolated and poorly understood genus. Specimens was first collected in the Luzhijiang Valley in August 2015, but only sterile or fruiting specimens were collected. In April 2022, a specimen with flowers was finally collected in Wadie, Yuanjiang...