Skip to main content

Arctic microalgae photosynthesis in darkness at theoretical minimum

NEWS - Microalgae require only one hundred thousandth of the amount of light available on Earth's surface for their growth. Photosynthesis can occur in nature even at very low light levels, allowing algae to build biomass when the sun is barely above the horizon.

Arctic microalgae photosynthesis in darkness at theoretical minimum

An international team of researchers used data from the MOSAiC expedition to investigate algae growth at the end of the polar night in northern latitudes and revealed that microalgae can build biomass through photosynthesis in the near-darkness of habitats beneath the snow and ice of the Arctic Ocean.

Photosynthesis in the Arctic Ocean occurs beneath the snow-covered sea ice, which allows only a few photons of incoming sunlight to pass through, but microalgae only have about one hundred thousandth of the amount of light available on Earth's surface for their growth.

"It is impressive to see how efficiently algae utilize such low amounts of light. This shows how well the organisms are adapted to their environment," says Clara Hoppe from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI).

Photosynthesis converts sunlight into energy, which is the basis of all life on the planet. However, previous measurements of the amount of light required for this have always been well above the theoretical minimum. The researchers show that biomass build-up can actually occur with light levels close to this minimum.

The research team froze the German icebreaker Polarstern in the central Arctic ice sheet for 12 months in 2019 to investigate the annual cycle of Arctic climate and ecosystems. Hoppe and his team focused on phytoplankton and ice algae, which are responsible for most of the photosynthesis in the central Arctic.

"To measure the very low light levels under the harsh Arctic winter conditions, we had to freeze a newly developed special instrument into the ice in the middle of the polar night," says Niels Fuchs from the University of Hamburg.

The measurements show that just a few days after the end of the month-long polar night, plant biomass builds up again, which is crucial for photosynthesis. Highly sensitive light sensors in the ice and water make it possible to measure the amount of available light.

The study was made possible by close collaboration between researchers from different disciplines to combine light field measurements with biological measurements. It is very difficult to account for irregularities in the light field under ice due to variations in the thickness of ice and snow.

"But in the end we can be sure that there is no more light," says Dirk Notz from the University of Hamburg.

The results of the study are important for the entire planet. Light for the production of energy and oxygen that can be used through photosynthesis in deeper ocean areas may also be available to fish. Suitable photosynthetic habitats in the global ocean could therefore be much larger than previously assumed.

"Although our results are specific to the Arctic Ocean, they show what photosynthesis is capable of. If photosynthesis is so efficient under challenging Arctic conditions, we assume that marine organisms in other regions are also very well adapted," says Choppe.

Original research

Hoppe, C.J.M., Fuchs, N., Notz, D. et al. Photosynthetic light requirement near the theoretical minimum detected in Arctic microalgae. Nature Communications 15, 7385 (2024), DOI:10.1038/s41467-024-51636-8

Popular Posts

Humpback whales (Megaptera novaeangliae) manufacture bubble-nets as tools to increase prey intake

NEWS - Humpback whales ( Megaptera novaeangliae ) create bubble net tools while foraging, consisting of internal tangential rings, and actively control the number of rings, their size, depth and horizontal spacing between the surrounding bubbles. These structural elements of the net increase prey intake sevenfold. Researchers have known that humpback whales create “bubble nets” for hunting, but the new report shows that the animals also manipulate them in a variety of ways to maximize catches. The behavior places humpbacks among the rare animals that make and use their own tools. “Many animals use tools to help them find food, but very few actually make or modify these tools themselves,” said Lars Bejder, director of the Marine Mammal Research Program (MMRP), University of Hawaii at Manoa. “Humpback whales in southeast Alaska create elaborate bubble nets to catch krill. They skillfully blow bubbles in patterns that form a web with internal rings. They actively control details such ...

Purhepecha oak (Quercus purhepecha), new species of shrub oak endemic to the state of Michoacán, Mexico

NEWS - In Mexico, several Quercus shrubby species are taxonomically very problematic including 8 taxa with similar characteristics. Now researchers report the purhepecha oak ( Quercus purhepecha De Luna-Bonilla, S. Valencia & Coombes sp. nov.) as a new tomentose shrubby white oak species with a distribution only in the Cuitzeo basin in the Trans-Mexican Volcanic Belt (TMVB). Quercus Linnaeus (1753) subdivided into 2 subgenera and 8 sections of which section Quercus (white oaks) has the widest distribution in the Americas, Asia and Europe. This section is very diverse in Mexico and Central America with phylogenomic evidence indicating recent and accelerated speciation in these regions. The number of shrubby oak species in Mexico is still uncertain. De Luna-Bonilla of the Universidad Nacional Autónoma de México and colleagues found at least 3 taxa in the TMVB, specifically Quercus frutex Trelease (1924), Quercus microphylla Née (1801) and Quercus repanda Bonpland (1809). In 2016,...

Cempaki (Termitomyces microcarpus)

Cempaki ( Termitomyces microcarpus ) is a species of fungus in the Lyophyllaceae family. It grows wild in tropical Asian forests near termite nests. It is rarely reported in urban areas. It is edible and known for its deliciousness, high nutritional value, and difficulty in cultivating. In Indonesia, it is used as an alternative food ingredient. T. microcarpus is the smallest of the Termitomyces species, umbrella-shaped, plain white, measuring 5 cm tall and 2.5 cm wide. It grows in dense clusters on surfaces and forms a mutualistic relationship, requiring the metabolic activity of termites as a substrate for growth. This species is known for its deliciousness, rich in nutrients, and has potential bioactive properties, such as helping lower cholesterol and acting as a tonic. Currently, it is difficult to cultivate on a large scale, and people rely solely on wild harvests. This mushroom is highly favored for its savory, delicious flavor and soft, chewy texture. It is often stir-fried ...