Skip to main content

Arctic microalgae photosynthesis in darkness at theoretical minimum

NEWS - Microalgae require only one hundred thousandth of the amount of light available on Earth's surface for their growth. Photosynthesis can occur in nature even at very low light levels, allowing algae to build biomass when the sun is barely above the horizon.

Arctic microalgae photosynthesis in darkness at theoretical minimum

An international team of researchers used data from the MOSAiC expedition to investigate algae growth at the end of the polar night in northern latitudes and revealed that microalgae can build biomass through photosynthesis in the near-darkness of habitats beneath the snow and ice of the Arctic Ocean.

Photosynthesis in the Arctic Ocean occurs beneath the snow-covered sea ice, which allows only a few photons of incoming sunlight to pass through, but microalgae only have about one hundred thousandth of the amount of light available on Earth's surface for their growth.

"It is impressive to see how efficiently algae utilize such low amounts of light. This shows how well the organisms are adapted to their environment," says Clara Hoppe from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI).

Photosynthesis converts sunlight into energy, which is the basis of all life on the planet. However, previous measurements of the amount of light required for this have always been well above the theoretical minimum. The researchers show that biomass build-up can actually occur with light levels close to this minimum.

The research team froze the German icebreaker Polarstern in the central Arctic ice sheet for 12 months in 2019 to investigate the annual cycle of Arctic climate and ecosystems. Hoppe and his team focused on phytoplankton and ice algae, which are responsible for most of the photosynthesis in the central Arctic.

"To measure the very low light levels under the harsh Arctic winter conditions, we had to freeze a newly developed special instrument into the ice in the middle of the polar night," says Niels Fuchs from the University of Hamburg.

The measurements show that just a few days after the end of the month-long polar night, plant biomass builds up again, which is crucial for photosynthesis. Highly sensitive light sensors in the ice and water make it possible to measure the amount of available light.

The study was made possible by close collaboration between researchers from different disciplines to combine light field measurements with biological measurements. It is very difficult to account for irregularities in the light field under ice due to variations in the thickness of ice and snow.

"But in the end we can be sure that there is no more light," says Dirk Notz from the University of Hamburg.

The results of the study are important for the entire planet. Light for the production of energy and oxygen that can be used through photosynthesis in deeper ocean areas may also be available to fish. Suitable photosynthetic habitats in the global ocean could therefore be much larger than previously assumed.

"Although our results are specific to the Arctic Ocean, they show what photosynthesis is capable of. If photosynthesis is so efficient under challenging Arctic conditions, we assume that marine organisms in other regions are also very well adapted," says Choppe.

Original research

Hoppe, C.J.M., Fuchs, N., Notz, D. et al. Photosynthetic light requirement near the theoretical minimum detected in Arctic microalgae. Nature Communications 15, 7385 (2024), DOI:10.1038/s41467-024-51636-8

Popular Posts

Laniger bat tick (Ixodes lanigeri), new hard tick species (Ixodidae) from mouse-eared bats (Myotis) in Vietnam

NEWS - Researchers have identified Ixodes ticks from Vietnam based on morphological and molecular characteristics of females, nymphs and larvae as a new species, laniger bat tick ( Ixodes lanigeri ), which like other members of the Ixodes ariadnae complex appears to show a preference for vesper bats as a typical host. Historically, for more than a century and a half, only one species has been called the “long-legged bat tick”: Ixodes vespertilionis Koch. However, over the past decade, it has been molecularly recognized that long-legged ixodid ticks associated with bats may represent at least six species. Host associations and geographic separation may explain the evolutionary divergence of the new species from its closest living relative Murina hilgendorfi Peters in East Asia, Japan, as no Myotis or Murina spp. have overlapping distributions between Vietnam and the Japanese mainland. On the other hand, assuming that I. lanigeri may be present in other myotine bats and knowing that s...

Giant golden spider (Nephila pilipes)

Kemlanding or giant golden orbweaver ( Nephila pilipes ) is an animal species in the Araneidae, a web spider with a vertical and asymmetrical mesh, sexually dimorphic with elongated females up to 20 cm in size and has a large investment in egg production and web construction, whereas males only a few millimeters. N. pilipes displays female gigantism and male dwarfism. Females usually have a body size of 30-50 mm, the cephalothorax is 15 mm long and 10 mm wide. The stomach is 30 mm long, 15 mm wide and is mostly tawny with yellow stripes. The female has black or brown, covered in thick hairs. The two rows of eyes stick out towards the back. Plastron is mostly black and brown. The legs are very long, stick-shaped with several joints, black and yellow, lacking of hairs. Males are 5-6.5 mm in size, cephalothorax is 2.5 mm long and 2 mm wide. The stomach is 4 mm long and 1.5 mm wide. The front eye is bigger than the back eye. The legs are light brown with some hair. Yellow carapace with ...

Kemadih (Schultesianthus coriaceus)

Kemadih ( Schultesianthus coriaceus ) is a species of plant in the Solanaceae family. It grows as a climber and covers host trees. It is a perennial, multi-branched, hardwood plant with hard, brown bark and dark green young bark. S. coriaceus has thick leaves, 15 cm long and 8 cm wide. A central vein is linear, with a pointed tip and base. The upper surface is dark green and the lower surface is bright green. The petiole is 3 cm long. The flowers are fan-shaped with 5 inflorescences. The base is narrow, whitish-yellow or bright green, and 8 cm wide. Four inflorescences with brownish-white tips and one inflorescence with a green tip grow in the center. The fruit is green, 3.5 cm long, and the stalk is 2 cm long. Kingdom: Plantae Phylum: Tracheophyta Subphylum: Angiospermae Class: Magnoliopsida Order: Solanales Family: Solanaceae Subfamily: Solanoideae Tribe: Solandreae Genus: Schultesianthus Species: Schultesianthus coriaceus