Skip to main content

Global natural and planted forests mapping at fine spatial resolution of 30 meters

NEWS - Reforestation to combat climate change often encroaches on natural forests, wetlands and grasslands, destroying biodiversity, disrupting the natural environment and disrupting carbon and water cycles.

Forest cover is increasing globally, but it is difficult to know whether this is natural forest regeneration and growth or whether it is new tree planting. Accurately mapping forests with remote sensing technology could help.

Global natural and planted forests mapping at fine spatial resolution of 30 meters

Researchers from Tongji University in Shanghai and South Dakota State University in Brookings present an innovative approach that automatically maps natural forests and new plantations accurately at a spatial resolution of 30 meters.

“Accurately mapping the global distribution of natural forests and plantations at such a fine spatial resolution is challenging, but it is critical to understanding and mitigating environmental issues such as carbon sequestration and biodiversity loss,” said Yuelong Xiao of Tongji University in Shanghai.

“Traditional methods often lack sufficient sampling, hampering the accuracy and resolution of global forest maps. Our study presents a new approach to overcome these limitations by generating extensive sampling through time-series analysis of Landsat imagery,” said Xiao.

The data were taken from several different mapping systems, with the primary sources being Google Earth Engine Landsat imagery from 1985-2021 preprocessed by the US Geological Survey and imagery from the Sentinel-1 satellite from 2021.

The researchers also used the European Space Agency’s 2021 land cover map (WorldCover2021) and data from the ALOS Global Digital Surface Model. To overcome computational limitations, the world was divided into 57,559 small patches covering the entire globe and 70 million samples.

Established natural forests and plantations were distinguished using a value called disturbance frequency. Natural forests are more stable and less likely to change in size due to external factors, while plantations are more likely to be disturbed through reforestation or deforestation and other natural and man-made changes.

“This method for accurately mapping natural forests and plantations globally at 30-meter resolution is reliable. The resulting maps and samples are valuable resources for future environmental research and management, contributing to efforts to combat climate change,” Xiao said.

“Next, we will use the resulting samples and mapping methods to periodically update and refine global maps of natural and planted forests. Our ultimate goal is to improve the accuracy and resolution of forest maps worldwide, providing critical data for policymakers and researchers,” Xiao said.

Original research

Yuelong Xiao, Qunming Wang, Hankui K. Zhang. Global Natural and Planted Forests Mapping at Fine Spatial Resolution of 30 m. Journal of Remote Sensing. 2024;4:0204, DOI:10.34133/remotesensing.0204

Dlium theDlium

Popular Posts

Integrative taxonomy reveals presence a new species West African mane jelly (Cyanea altafissura)

NEWS - A new species of Cyanea is described from samples collected in the Gulf of Guinea during 2017-2019. The species is a member of the nozakii group that has discontinuous radial septa and is characterized by, among other things, deeper rhopalial than velar marginal clefts, uniform papillose exumbrella, up to 200 tentacles per cluster and a dense network of anastomosing canals in a broad quadrate fold. West African mane jelly ( Cyanea altafissura ) can be genetically distinguished from relatives in the ITS1 and COI regions as confirmed by several phylogenies and other analyses. This is the first record of a member of the nozakii group in the Atlantic Ocean and the first description of a genus Cyanea from the west coast of Africa and the tropical Atlantic Ocean. Cyanea Péron & Lesueur (1810) currently includes 17 species and is the second largest number of valid and recognized species in the Semaeostomeae of Agassiz (1862), after Aurelia Lamarck (1816). Both genera are rarely re

Jangjeon balsam (Impatiens jangjeonense Balsaminaceae), a new species from mountains of South Korea

NEWS - Researchers from Chungbuk National University in Cheongju and the National Institute of Biological Resources in Incheon report Impatiens jangjeonense (Balsaminaceae) as a new species from the mountainous region of Gangwon-do Province in South Korea. The new species inhabits mountainous habitats at elevations of 400–1200 meters and is often found in shaded valleys near streams. I. jangjeonense coexists with I. hambaeksanensis on Mount Hambaeksan, Gangwon-do. However, populations of both species are completely isolated from each other, making gene flow between the two species unlikely. The genus Impatiens exhibits great variation in morphology. Flower color and morphology vary greatly, along with diverse capsule and seed shapes. In particular, a variety of organ colors, shapes, and sizes are observed within the same species or the same population. Partly because of this variability, the taxonomy of Impatiens has proven challenging. I. jangjeonense is morphologically similar to

Camel-spider (Karschia Walter, 1889) got two new species, Karschia shannan and Karschia trisetalis

NEWS - Two new species have been reported from Xizang, China, Karschia shannan and Karschia trisetalis which were added to the genus Karschia Walter (1889) which so far contains 32 species distributed in North Africa, the Middle East and Central Asia with 12 of them described from western China. Solifugae commonly known as camel spiders, sun spiders and wind scorpions are an order of mostly nocturnal, fast-moving and predatory arachnids characterized by their powerful two-segmented chelicerae and voracious appetite. Shannan camel-spider ( K. shannan ) is named after Shannan City where the specimen was collected and K. trisetalis is a combination of the Latin word "tri" meaning three, "seta" as a spiniform structure and the suffix "ālis" meaning āle which together mean "pertaining to three setae" referring to the flagella complex of the male chelicerae with three fcs. K. shannan differs in males from all Karschia species by the ventral coxae of