Skip to main content

Stone pen in new genus Lithoptilum and sea pen in Anthoptilum, Calibelemnon removed

Stone pen in new genus Lithoptilum and sea pen in Anthoptilum, Calibelemnon removed

NEWS - Researchers report new analysis results that support the establishment of a new genus, Lithoptilum, to accommodate rock pens as a taxon close to Anthoptilum within the Anthoptilidae (Pennatuloidea) and require the deletion of the species Calibelemnon francei and the genus Calibelemnon within the Scleroptilidae.

Upasana Ganguly and Scott France of the University of Louisiana at Lafayette used a phylogenetic tree based on multilocus data and a single mitochondrial marker that showed all rock pens form a monophyletic clade within a larger clade representing the Anthoptilidae, deleting Calibelemnon (Scleroptilidae) and erecting the genus Lithoptilum.

Sea pens (Pennatuloidea) are a specialized group of octocorals that evolved to live anchored to the seafloor on soft sediments using their stalks as anchors, whereas rock-dwelling sea pens or rock pens use sucker-like stalks to attach to hard substrate surfaces, an adaptation previously unknown to sea pens.

Four species have now been identified as rock pens based on stalk morphology, three species within Anthoptilum and one within Calibelemnon. But this study found that the type specimen of Calibelemnon symmetricum (Nutting, 1908) is a colony with an elongated stalk, which is typical of soft-sediment sea pens, making the genus homogeneous.

Ganguly and France explored the geographic distribution and habitat depths using the NOAA Ship Okeanos Explorer and operated ROVs to record high-definition video to investigate the evolutionary origins of rock pens. They found thousands of colonies in the central Pacific Ocean at a depth of 450 meters. No such rock pen fields were observed in deeper waters.

Phylogenomic analyses were based on DNA sequences of ultraconserved elements (UCEs) and compared with trees constructed using mitochondrial genes. The ancestors of sea pens evolved along a single lineage that is sister to the lineage comprising the genus Anthoptilum. All rock pen species should be grouped into a new genus within Anthoptilidae.

Mitochondrial gene sequence analysis shows that the rock pen has the same gene sequence as Anthoptilum grandiflorum and Anthoptilum murrayi in the Octocoral B gene sequence. The arrangement is different from all other sea pens but matches that of bamboo corals (Keratoisididae). Among the 7 species that have been described in Anthoptilidae, 6 species have the same gene sequence.

Original research

Upasana Ganguly & Scott C. France (2024). Expanded distribution and a new genus for rock-inhabiting sea pens (Cnidaria, Anthozoa, Octocorallia, Pennatuloidea). Zootaxa, 5507 (1): 123-139, DOI:10.11646/zootaxa.5507.1.5

Popular Posts

Redflower ragleaf (Crassocephalum crepidioides)

Sintrong or ebolo or thickhead or redflower ragleaf ( Crassocephalum crepidioides ) are plant species in Asteraceae, terma height 25-100 cm, white fibrous roots, generally grow wild on the roadside, yard gardens or abandoned lands at altitude 200- 2500 m. C. crepidioides has erect or horizontal stems along the soil surface, vascular, soft, non-woody, shallow grooves, green, rough surface and short white hair, aromatic fragrance when squeezed. Petiole is spread on stems, tubular and eared. Single leaf, spread out, green, 8-20 cm long, 3-6 cm wide, longitudinal or round inverted eggshell with a narrow base along the stalk. Pointed tip, flat-edged or curved to pinnate, jagged rough and pointed. The top leaves are smaller and often sit. Compound flowers grow throughout the year in humps that are arranged in terminal flat panicles and androgynous. Green cuffs with orange-brown to brick-red tips, cylindrical for 13-16 mm long and 5-6 mm wide. The crown is yellow with a brownish red...

Li chun horned toad (Boulenophrys lichun) makes mating calls in spring from rock crevices in Ningde City

NEWS - Researchers report Li chun horned toad ( Boulenophrys lichun sp. nov.) from the coastal hills of eastern Fujian Province, China, that differs from all known relatives by a combination of morphological character differences and genetic divergence in the mitochondrial 16S + CO1 gene pool. During a field survey in eastern Fujian, researchers collected a series of Boulenophrys specimens Fei, Ye & Jiang, 2016. Initial morphological examination indicated that the specimens differed from their known relatives by a series of distinct characters. Subsequent molecular analysis further revealed that these specimens represent a separate evolutionary lineage, showing significant differences from their known relatives. Therefore, the researchers describe it as a new species. B. lichun is small in size (SVL 33.5–37.0 mm in 5 adult males, SVL 47.1 mm in 1 adult female); rostra canthus well developed, tongue not notched posteriorly; tympanum distinct; vomerine ridge and vomerine teeth pres...

Thomas Sutikna lives with Homo floresiensis

BLOG - On October 28, 2004, a paper was published in Nature describing the dwarf hominin we know today as Homo floresiensis that has shocked the world. The report changed the geographical landscape of early humans that previously stated that the Pleistocene Asia was only represented by two species, Homo erectus and Homo sapiens . The report titled "A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia" written by Peter Brown and Mike J. Morwood from the University of New England with Thomas Sutikna, Raden Pandji Soejono, Jatmiko, E. Wahyu Saptomo and Rokus Awe Due from the National Archaeology Research Institute (ARKENAS), Indonesia, presents more diversity in the genus Homo. “Immediately, my fever vanished. I couldn’t sleep well that night. I couldn’t wait for sunrise. In the early morning we went to the site, and when we arrived in the cave, I didn’t say a thing because both my mind and heart couldn’t handle this incredible moment. I just went down...