Skip to main content

Two species of pterosaurs, Arambourgiania philadelphiae and Inabatin alarabia, had different flight styles

NEWS - Scientists confirm the flight capabilities of giants in the ancient skies, with some pterosaur species flapping their wings while others soared like vultures. New finds include a new pterosaur with a wingspan of 5 meters (16 feet) and one of the most complete pterosaurs ever discovered from Afro-Arabia.

Two species of pterosaurs, Arambourgiania philadelphiae and Inabatin alarabia, had different flight styles

Scientists have long debated whether the largest pterosaurs could fly at all. But extraordinary and rare three-dimensional fossils of two species of large-bodied azhdarchoid pterosaurs have led scientists to hypothesize that the largest pterosaurs not only could fly, but that their flight styles may have been different.

Kierstin Rosenbach of the University of Michigan in Ann Arbor and her team detail the fossils from the late Cretaceous period (72-66 million years ago) that are remarkably preserved in three dimensions at two different sites in coastal environments on the edge of Afro-Arabia, an ancient landmass that included Africa and the Arabian Peninsula.

“The excavation team was surprised to find a pterosaur bone preserved in three dimensions, which is a very rare occurrence because pterosaur bones are hollow, very fragile and more likely to be found flattened like a pancake,” Rosenbach said.

“Because 3D preservation is so rare, we don’t have much information about what pterosaur bones look like inside, so I wanted to CT scan them. It’s very possible that there’s nothing preserved inside or that the CT scanner isn’t sensitive enough to distinguish the fossil bone tissue from the surrounding matrix,” Rosenbach said.

The new specimen was collected from a giant pterosaur already known, Arambourgiania philadelphiae with a wingspan of 10 meters (33 feet), and provides the first details about the bone’s structure. CT images reveal that the interior of the humerus is hollow and contains a series of ridges that spiral up and down the bone.

The fossil resembles the structure on the inside of the wing bones of vultures. The spiral ridges are hypothesized to have supported the torsional loads associated with high-altitude or sustained powered flight that requires launching and flapping.

Another specimen is a new genus and species, Inabtanin alarabia, which had a wingspan of 5 metres. Inabtanin is one of the most complete pterosaurs ever found from Afro-Arabia and CT scans reveal a completely different flight bone structure from Arambourgiania.

The inner wing bones are crisscrossed with the same arrangement of struts as in the wing bones of modern flapping birds. These bones are adapted to withstand the bending loads associated with flapping. It is likely that Inabtanin flew by flapping its wings.

“The struts in Inabtanin are very interesting to look at, although unusual. The ridges in Arambourgiania are completely unexpected. To see a complete 3D model of the humerus of Arambourgiania covered in helical ridges is really exciting,” says Rosenbach.

The diverse flight styles of these different-sized pterosaurs provide a window into how they lived and raises interesting questions, such as to what extent flight style correlated with body size and which flight styles were more common among pterosaurs.

"If we look at the flying vertebrate groups, birds and bats, we can see that flapping is by far the most common flight behavior. Even birds that soar or glide require some wing flapping and maintain a flight position," Rosenbach said.

"Flapping flight is the default state, and soaring flight may have evolved later if it was advantageous for pterosaur populations in a particular environment; in this case, the open ocean," Rosenbach said.

The specimens were discovered by Jeff Wilson Mantilla, a curator at the University of Michigan Museum of Paleontology and Department of Earth and Environmental Sciences in Ann Arbor, in 2007 in northern and southern Jordan. The bone variations likely reflect responses to mechanical forces on pterosaur wings during flight.

"Pterosaurs were the earliest and largest vertebrates to evolve powered flight, but they are the only major extinct group of volants. Efforts to understand them so far have relied on aerodynamic principles and analogies with birds and bats," Rosenbach said.

"This study provides a framework for further investigation of the correlation between internal bone structure, flight capacity and behavior that will hopefully lead to a broader sampling of flight bone structures in pterosaur specimens," Rosenbach said.

Original research

Rosenbach, K. L., Goodvin, D. M., Albshysh, M. G., Azzam, H. A., Smadi, A. A., Mustafa, H. A., … Wilson Mantilla, J. A. (2024). New pterosaur remains from the Late Cretaceous of Afro-Arabia provide insight into flight capacity of large pterosaurs. Journal of Vertebrate Paleontology, DOI:10.1080/02724634.2024.2385068

Popular Posts

A deep-sea isopod Bathyopsurus nybelini adapted to feed submerged Sargassum algae

NEWS - Incredible footage shows a marine species, Bathyopsurus nybelini , feeding on something that sinks from the ocean’s surface. Researchers using the submersible Alvin found the isopod swimming 3.7 miles down using its paddle-like legs to catch an unexpected food source: Sargassum. Researchers from Woods Hole Oceanographic Institution (WHOI), the University of Montana, SUNY Geneseo, Willamette University and the University of Rhode Island found the algae sinking, while the isopod waited and adapted specifically to find and feed on the sinking nutrient source. The Sargassum lives on the surface for photosynthesis. The discovery of a deep-sea animal that relies on food that sinks from the waters miles above underscores the close relationship between the surface and the deep. “It’s fascinating to see this beautiful animal actively interacting with sargassum, so deep in the ocean. This isopod is extremely rare; only a handful of specimens were collected during the groundbreaking Swedis

Ngamugawi wirnagarri reveals evolution of coelacanth fish and history of life on earth

NEWS - An ancient Devonian coelacanth has been remarkably well preserved in a remote location in Western Australia linked to increased tectonic activity. An international team of researchers analysed fossils of the primitive fish from the Gogo Formation of Ngamugawi wirngarri , which straddles a key transition period in the history of coelacanths, between the most primitive and more modern forms. The new fish species adds to the evidence for Earth’s evolutionary journey. Climate change, asteroid strikes and plate tectonics are all key subjects in the origins and extinctions of animals that played a major role in evolution. Is the world’s oldest ‘living fossil’ the coelacanth still evolving? “We found that plate tectonic activity had a major influence on the rate of coelacanth evolution. New species are more likely to have evolved during periods of increased tectonic activity when new habitats were divided and created,” says Alice Clement of Flinders University in Adelaide. The Late Dev

Integrative taxonomy reveals presence a new species West African mane jelly (Cyanea altafissura)

NEWS - A new species of Cyanea is described from samples collected in the Gulf of Guinea during 2017-2019. The species is a member of the nozakii group that has discontinuous radial septa and is characterized by, among other things, deeper rhopalial than velar marginal clefts, uniform papillose exumbrella, up to 200 tentacles per cluster and a dense network of anastomosing canals in a broad quadrate fold. West African mane jelly ( Cyanea altafissura ) can be genetically distinguished from relatives in the ITS1 and COI regions as confirmed by several phylogenies and other analyses. This is the first record of a member of the nozakii group in the Atlantic Ocean and the first description of a genus Cyanea from the west coast of Africa and the tropical Atlantic Ocean. Cyanea PĂ©ron & Lesueur (1810) currently includes 17 species and is the second largest number of valid and recognized species in the Semaeostomeae of Agassiz (1862), after Aurelia Lamarck (1816). Both genera are rarely re