Skip to main content

Early human species inhabited highlands for availability and diversity of food

Early human species inhabited highlands for availability and diversity of food

NEWS - Researchers at the IBS Center for Climate Physics (ICCP) at Pusan National University in South Korea suggest that the patchwork of ecosystems found in mountainous regions played a key role in human evolution.

Using a vast dataset of fossils, artifacts, high-resolution landscapes and 3 million-year-long simulations of Earth’s climate, a team of scientists is painting a clearer picture of how and why early humans adapted to rugged landscapes.

Hominins are often found in and near mountainous regions. Now Elke Zeller and Axel Timmermann have helped explain why so many of our evolutionary relatives preferred to be “highlanders” rather than “lowlanders.”

Mountainous regions are rich in biodiversity, providing a range of environmental conditions in which different species of plants and animals thrive. Steep areas typically exhibit a greater diversity, density of ecosystems and vegetation types, known as biomes.

This diversity of biomes was attractive to early humans because it provided more food resources and resilience to climate change, an idea known as the Diversity Selection Hypothesis.

“When we analyzed the environmental factors that controlled the habitation of the human species, we were surprised to see that the steepness of the terrain stood out as the dominant factor, even more so than local climatic factors, such as temperature and precipitation,” says Elke Zeller.

On the other hand, steep terrain is more difficult to navigate and requires more energy to traverse. Hominins needed to gradually adapt to steeper challenges in order to take advantage of increasing resources. Over time, human adaptation changed the cost-benefit balance of living in steep environments.

Adaptation to steeper environments was seen in the earliest human species Homo habilis, Homo ergaster and Homo erectus until about 1 million years ago, after which the topographic signal disappeared for about 300,000 years.

Around 700,000 years ago, better adapted and more culturally advanced species such as Homo heidelbergensis and Homo neanderthalensis emerged. These groups were able to control fire and showed a much higher tolerance for colder and wetter climates.

“The decline in topographic adaptation around 1 million years ago roughly coincides with a large-scale reorganization in the climate system known as the Mid-Pleistocene Transition. It also coincides with evolutionary events such as the ancestral genetic bottleneck that drastically reduced human diversity, and the timing of the hominin chromosome 2 merger,” says Axel Timmermann.

“Whether this was all just a coincidence or whether increasingly intense glacial climate shifts contributed to the genetic transition in archaic humans is still an open question,” says Timmermann.

How humans evolved over the past 3 million years and adapted to emerging environmental challenges is a hotly debated topic. A South Korean research team provides a new piece in the human evolutionary puzzle. Data spanning hundreds of thousands of years across multiple species and continents clearly show that our ancestors were highlanders.

“Hominins adapted to steep terrain and this trend was likely driven by increasing biodiversity in the region. We show that it was advantageous for archaic human groups to inhabit mountainous areas, despite the increased energy consumption involved,” says Zeller.

Original research

Elke Zeller, Axel Timmermann, The evolving three-dimensional landscape of human adaptation. Science Advances, 10, eadq3613 (2024), DOI:10.1126/sciadv.adq3613

Dlium theDlium

Popular Posts

Purhepecha oak (Quercus purhepecha), new species of shrub oak endemic to the state of Michoacán, Mexico

NEWS - In Mexico, several Quercus shrubby species are taxonomically very problematic including 8 taxa with similar characteristics. Now researchers report the purhepecha oak ( Quercus purhepecha De Luna-Bonilla, S. Valencia & Coombes sp. nov.) as a new tomentose shrubby white oak species with a distribution only in the Cuitzeo basin in the Trans-Mexican Volcanic Belt (TMVB). Quercus Linnaeus (1753) subdivided into 2 subgenera and 8 sections of which section Quercus (white oaks) has the widest distribution in the Americas, Asia and Europe. This section is very diverse in Mexico and Central America with phylogenomic evidence indicating recent and accelerated speciation in these regions. The number of shrubby oak species in Mexico is still uncertain. De Luna-Bonilla of the Universidad Nacional Autónoma de México and colleagues found at least 3 taxa in the TMVB, specifically Quercus frutex Trelease (1924), Quercus microphylla Née (1801) and Quercus repanda Bonpland (1809). In 2016,...

Javan mocca or Javan slender caesar (Amanita javanica)

OPINION - Javan mocca or Javan slender caesar ( Amanita javanica ) is a mysterious fungus species and has been enigmatic since it was first reported by Boedijn in 1951 and after that no explanation or reporting of specimens is believed to be the same as expected. Boedijn (1951) described A. javanica which grew on Java island as having the characteristics covered in the Amanita genus. Corner and Bas in 1962 tried to describe Javan mocca and all species in Amanita based on specimens in Singapore. Over time some reports say that they have found A. javanica specimens in other Southeast Asia including also China, Japan, India and Nepal. But there is no definitive knowledge and many doubt whether the specimen is the same as described by Boedijn (1951). I was fortunate to have seen this species one afternoon and soon I took out a camera for some shots. In fact, I've only met this mushroom species once. Javan mocca is an endangered species and I have never seen in my experience in...

Tekijem (Cyperus cyperoides)

Tekijem ( Cyperus cyperoides ) is a plant species in Cyperaceae, annual grasses that grow in seasonal wetlands, open or shaded fields, swamps, ponds, rice fields, roadsides, open forests, secondary forests and shrubs at altitudes up to 1,800 m in the tropics. C. cyperoides has an upright, triangular shape, 20-75 cm tall from a very short rhizome and has no stolon. The lanceolate-shaped leaves are narrow and long, the tips are pointed, slippery, shiny, green and grow at the bottom and at the top of the stem. The terminal flower appears on the tip of the stem, cylindrical spiklet shaped and green. Each stem has two to seven flowers, each of which has a short or long stem that grows at the end of the stem together with the leaves. Tekijem grows solitary or in small groups at a distance. Propagating using vegetative and generative methods using seeds. At least three sub-species are Cyperus cyperoides cyperoides , Cyperus cyperoides flavus and Cyperus cyperoides pseudoflavus . Th...