Skip to main content

Early human species inhabited highlands for availability and diversity of food

Early human species inhabited highlands for availability and diversity of food

NEWS - Researchers at the IBS Center for Climate Physics (ICCP) at Pusan National University in South Korea suggest that the patchwork of ecosystems found in mountainous regions played a key role in human evolution.

Using a vast dataset of fossils, artifacts, high-resolution landscapes and 3 million-year-long simulations of Earth’s climate, a team of scientists is painting a clearer picture of how and why early humans adapted to rugged landscapes.

Hominins are often found in and near mountainous regions. Now Elke Zeller and Axel Timmermann have helped explain why so many of our evolutionary relatives preferred to be “highlanders” rather than “lowlanders.”

Mountainous regions are rich in biodiversity, providing a range of environmental conditions in which different species of plants and animals thrive. Steep areas typically exhibit a greater diversity, density of ecosystems and vegetation types, known as biomes.

This diversity of biomes was attractive to early humans because it provided more food resources and resilience to climate change, an idea known as the Diversity Selection Hypothesis.

“When we analyzed the environmental factors that controlled the habitation of the human species, we were surprised to see that the steepness of the terrain stood out as the dominant factor, even more so than local climatic factors, such as temperature and precipitation,” says Elke Zeller.

On the other hand, steep terrain is more difficult to navigate and requires more energy to traverse. Hominins needed to gradually adapt to steeper challenges in order to take advantage of increasing resources. Over time, human adaptation changed the cost-benefit balance of living in steep environments.

Adaptation to steeper environments was seen in the earliest human species Homo habilis, Homo ergaster and Homo erectus until about 1 million years ago, after which the topographic signal disappeared for about 300,000 years.

Around 700,000 years ago, better adapted and more culturally advanced species such as Homo heidelbergensis and Homo neanderthalensis emerged. These groups were able to control fire and showed a much higher tolerance for colder and wetter climates.

“The decline in topographic adaptation around 1 million years ago roughly coincides with a large-scale reorganization in the climate system known as the Mid-Pleistocene Transition. It also coincides with evolutionary events such as the ancestral genetic bottleneck that drastically reduced human diversity, and the timing of the hominin chromosome 2 merger,” says Axel Timmermann.

“Whether this was all just a coincidence or whether increasingly intense glacial climate shifts contributed to the genetic transition in archaic humans is still an open question,” says Timmermann.

How humans evolved over the past 3 million years and adapted to emerging environmental challenges is a hotly debated topic. A South Korean research team provides a new piece in the human evolutionary puzzle. Data spanning hundreds of thousands of years across multiple species and continents clearly show that our ancestors were highlanders.

“Hominins adapted to steep terrain and this trend was likely driven by increasing biodiversity in the region. We show that it was advantageous for archaic human groups to inhabit mountainous areas, despite the increased energy consumption involved,” says Zeller.

Original research

Elke Zeller, Axel Timmermann, The evolving three-dimensional landscape of human adaptation. Science Advances, 10, eadq3613 (2024), DOI:10.1126/sciadv.adq3613

Dlium theDlium

Popular Posts

Thomas Sutikna lives with Homo floresiensis

BLOG - On October 28, 2004, a paper was published in Nature describing the dwarf hominin we know today as Homo floresiensis that has shocked the world. The report changed the geographical landscape of early humans that previously stated that the Pleistocene Asia was only represented by two species, Homo erectus and Homo sapiens . The report titled "A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia" written by Peter Brown and Mike J. Morwood from the University of New England with Thomas Sutikna, Raden Pandji Soejono, Jatmiko, E. Wahyu Saptomo and Rokus Awe Due from the National Archaeology Research Institute (ARKENAS), Indonesia, presents more diversity in the genus Homo. “Immediately, my fever vanished. I couldn’t sleep well that night. I couldn’t wait for sunrise. In the early morning we went to the site, and when we arrived in the cave, I didn’t say a thing because both my mind and heart couldn’t handle this incredible moment. I just went down...

Black potato (Coleus rotundifolius)

Black potato ( Coleus rotundifolius ) is a species of plant in Lamiaceae, herbaceous, fibrous roots and tubers, erect and slightly creeping stems, quadrangular, thick, and slightly odorous. Single leaves, thick, membranous, opposite and alternate. Leaves are oval, dark green and shiny on the upper side, bright green on the lower side. Up to 5 cm long, up to 4 cm wide, slightly hairy and pinnate leaf veins. Leaf stalks up to 4 cm long. Small, purple flowers. Star-shaped petals, lip-shaped crown, dark to light purple with a slightly curved tube shape. Flowering from February-August. Small tubers, brown and white flesh and tuber length 2-4 cm. Kingdom: Plantae Phylum: Tracheophyta Subphylum: Angiospermae Class: Magnoliopsida Order: Lamiales Family: Lamiaceae Subfamily: Nepetoideae Tribe: Ocimeae Subtribe: Plectranthinae Genus: Coleus Species: Coleus rotundifolius

Wild durian (Cullenia exarillata)

Wild durian ( Cullenia exarillata ) is a species of plant in the Malvaceae, a tall tree with smooth, greyish-white bark, peeling on older trees, a straight trunk, horizontal branches and often with a series of knob-like tubercles for flower and fruit attachment. C. exarillata has young branches and the underside of the leaves is covered with golden brown peltate or shield-like scales. The leaves are single, alternate, glabrous, glossy green on the upper side and covered with silvery or orange peltate scales on the underside. Hermaphroditic flowers are tubular and also covered with golden brown scales, 4-5 cm long and cream or reddish brown in color. Flowers have no petals, formed of tubular bracteoles and tubular calyxes, 5-lobed. Fruit is round, 10-13 cm in diameter, covered with thorns and clustered along the branches. Many seeds, reddish brown, 4-5 cm long and 2-3 cm wide. The seeds are enclosed by a fleshy, whitish aril. The fruit splits open when ripe and dries to release the s...